Difference between revisions of "Manuals/calci/IMSQRT"

From ZCubes Wiki
Jump to navigation Jump to search
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMSQRT(z)'''</div><br/>
+
<div style="font-size:30px">'''IMSQRT (ComplexNumber)'''</div><br/>
*<math> z </math> is the complex number is of the form <math>x+iy</math>  
+
*<math>ComplexNumber </math> is of the form <math>z=x+iy</math>.
 
+
**IMSQRT(),returns the difference between two complex numbers
  
 
==Description==
 
==Description==
 
 
*This function gives  square root of a complex number.
 
*This function gives  square root of a complex number.
*IMSQRT(z), Where z  is the complex number is in the form of "x+iy".
+
*IMSQRT(ComplexNumber), where complex number is in the form of "x+iy".
*where x&y are the real numbers.'i' imaginary unit .<math>i=\sqrt{-1}</math>.
+
*where x&y are the real numbers.<math>i</math> imaginary unit .<math>i=\sqrt{-1}</math>.
*The square root of a complex number is defined by <math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^}=\sqrt{r}(cos(θ/2)+isin(θ/2)</math>
+
*Consider the complex number z.
*where r is the modulus of z. <math>r=\sqrt{x^2+y^2}</math>  
+
*The square root of a complex number is defined by:
*And θ is the argument of z. <math> θ=tan^{-1}(y/x)</math> also θ∈(-Pi(),Pi()].
+
<math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^{i\theta}}=\sqrt{{r}(cos(\frac{\theta}{2})+isin(\frac{\theta}{2})}</math>
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
+
*where <math>r</math> is the modulus of <math>z</math>. <math>r=\sqrt{x^2+y^2}</math>  
 +
*And <math>\theta</math> is the argument of <math>z</math>. <math> \theta=tan^{-1}(y/x)</math> also <math>\theta \isin (-\pi,\pi]</math>.
 +
*We can use [[Manuals/calci/COMPLEX| COMPLEX]]  function to convert real and imaginary number in to a complex number.
  
 +
==ZOS==
 +
*The syntax is to calculate square root of a complex number in ZOS is <math>IMSQRT(ComplexNumber)</math>.
 +
**<math>ComplexNumber</math> is of the form <math>z=x+iy</math>
 +
*For e.g.,IMSQRT("9+10i")
 +
*IMSQRT(IMSUB("9+10i","-2-3i"))
 +
{{#ev:youtube|ofW56najtOE|280|center|Imaginary Square Root}}
  
 
==Examples==
 
==Examples==
 
 
#=IMSQRT("2+3i")=1.67414922803554+0.895977476129838i
 
#=IMSQRT("2+3i")=1.67414922803554+0.895977476129838i
 
#=IMSQRT("-4-5i")=1.09615788950152-2.2806933416653i
 
#=IMSQRT("-4-5i")=1.09615788950152-2.2806933416653i
#=IMSQRT("7")=2.64575131106459                 
+
#=IMSQRT("7")=2.6457513110645907+ⅈ0                 
 
#=IMSQRT("8i")=2+2i
 
#=IMSQRT("8i")=2+2i
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|X7Fzk4ijRz8|280|center|IMSQRT}}
 +
 +
==See Also==
 +
*[[Manuals/calci/IMREAL  | IMREAL ]]
 +
*[[Manuals/calci/IMSUM  | IMSUM ]]
 +
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 +
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 +
 +
 +
==References==
 +
[http://en.wikipedia.org/wiki/Binary_logarithm  Binary Logarithm]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:05, 18 July 2018

IMSQRT (ComplexNumber)


  • is of the form .
    • IMSQRT(),returns the difference between two complex numbers

Description

  • This function gives square root of a complex number.
  • IMSQRT(ComplexNumber), where complex number is in the form of "x+iy".
  • where x&y are the real numbers. imaginary unit ..
  • Consider the complex number z.
  • The square root of a complex number is defined by:

  • where is the modulus of .
  • And is the argument of . also .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate square root of a complex number in ZOS is .
    • is of the form
  • For e.g.,IMSQRT("9+10i")
  • IMSQRT(IMSUB("9+10i","-2-3i"))
Imaginary Square Root

Examples

  1. =IMSQRT("2+3i")=1.67414922803554+0.895977476129838i
  2. =IMSQRT("-4-5i")=1.09615788950152-2.2806933416653i
  3. =IMSQRT("7")=2.6457513110645907+ⅈ0
  4. =IMSQRT("8i")=2+2i

Related Videos

IMSQRT

See Also


References

Binary Logarithm