Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
 
(26 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMDIV()'''</div><br/>
 +
*Parameters are any complex numbers of the form of a+ib.
 +
**IMDIV(),returns the quotient of two complex numbers
  
Syntax
+
==Description==
  
</div></div>
+
*This function gives the division of two complex numbers.
----
+
*This function used to remove the <math>i</math> (imaginary unit) from the denominator.
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*The two Parameters are in the form  of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>.
 +
*Let z1 and z2 are the two Complex Numbers.
 +
*To do the division of complex number we have follow the steps:
 +
step 1: Write the complex number in the fraction form.
 +
step 2: Find the conjugate of the denominator.
 +
step 3: Multiply the numerator and denominator with conjugate.
 +
:<math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}</math>.
 +
*To find the Conjugate of a Complex Number we can use the function [[Manuals/calci/IMCONJUGATE  | IMCONJUGATE]].
  
Remarks
+
==ZOS==
 +
*The syntax is to calculate the IMDIV in ZOS is <math>IMDIV()</math>.
 +
**Parameters are any complex numbers of the form of a+ib.
 +
*For e.g.,IMDIV("3+2i","3-2i")
  
</div></div>
+
{{#ev:youtube|2I89nee0Gmc|280|center|ImDiv}}
----
 
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Examples
+
==Examples==
 +
#IMDIV("4+2i","3-i") =<math>\frac{4+2i}{3-i}*\frac{3+i}{3+i}</math> = <math>\frac{12+10i+2i^2}{3^2-i^2} = 10+\frac{10i}{10}</math> (because <math>i^2=-1</math>) = <math> 1+\frac{i}{1} = 1+1i </math>
 +
#IMDIV("3-5i","2-6i") = 0.9+0.2i
 +
#IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
 +
#IMDIV("1+i","2") = 0.5+0.5i
  
</div></div>
+
==Related Videos==
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
{{#ev:youtube|Z8j5RDOibV4|280|center|Dividing Complex Numbers}}
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
+
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 +
*[[Manuals/calci/IMREAL  | IMREAL ]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the quotient of two complex numbers in 'a + bi' or 'a +bj' text format.</font></font></font>
 
  
</div></div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Complex_division  Complex Division]
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMDIV</font>'''</font></div></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The quotient of two complex numbers is: </font></font></font>
 
  
<font color="#484848">IMDIV(z1,z2)=(a+bi)/(c-di)=[(ac-bd)+(bc-ad)i] / (c<sup>2</sup>-d<sup>2</sup>)</font>
 
  
</div></div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMDIV'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN1'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN2'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN1 and IN2 are the</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2"> complex numerator or dividend and the complex denominator or divisor.</font></font></font>
+
*[[ Z3 |  Z3 home ]]
 
 
</div></div>
 
----
 
<div id="9SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 12.533333333333333+-15.066666666666666i
 
| class="                          " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| class="  " | Row2
 
| class="f52543                                                                                                                                                                      " |
 
| class="  SelectTD" |
 
<div id="9Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="9Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| Row3
 
| class="  " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row4
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| class=" " | Row5
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row6
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">I.e.=IMDIV(“512+120i”,”12+24i”) is12.533+-15.067i</font></font></font>
 
 
 
</div>
 
----
 

Latest revision as of 15:34, 19 July 2018

IMDIV()


  • Parameters are any complex numbers of the form of a+ib.
    • IMDIV(),returns the quotient of two complex numbers

Description

  • This function gives the division of two complex numbers.
  • This function used to remove the (imaginary unit) from the denominator.
  • The two Parameters are in the form of and , where & are real numbers is the imaginary unit, .
  • Let z1 and z2 are the two Complex Numbers.
  • To do the division of complex number we have follow the steps:
step 1: Write the complex number in the fraction form.
step 2: Find the conjugate of the denominator.
step 3: Multiply the numerator and denominator with conjugate.
.
  • To find the Conjugate of a Complex Number we can use the function IMCONJUGATE.

ZOS

  • The syntax is to calculate the IMDIV in ZOS is .
    • Parameters are any complex numbers of the form of a+ib.
  • For e.g.,IMDIV("3+2i","3-2i")
ImDiv

Examples

  1. IMDIV("4+2i","3-i") = = (because ) =
  2. IMDIV("3-5i","2-6i") = 0.9+0.2i
  3. IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
  4. IMDIV("1+i","2") = 0.5+0.5i

Related Videos

Dividing Complex Numbers

See Also


References

Complex Division