Difference between revisions of "Manuals/calci/IMEXP"

From ZCubes Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''IMEXP(ComplexNumber)'''</div><br/>
 
<div style="font-size:30px">'''IMEXP(ComplexNumber)'''</div><br/>
*<math>ComplexNumber</math> is of the form a+bi.
+
*<math>ComplexNumber</math> is of the form x+iy.
 +
**IMEXP(), returns the exponential of a complex number.
 +
 
  
 
==Description==
 
==Description==
Line 14: Line 16:
 
*We can use [[Manuals/calci/COMPLEX  | COMPLEX ]] function to convert the real and imaginary coefficients to a complex number.
 
*We can use [[Manuals/calci/COMPLEX  | COMPLEX ]] function to convert the real and imaginary coefficients to a complex number.
  
==ZOS Section==
+
==ZOS==
  
 
*The syntax is to calculate IMEXP in ZOS is <math>IMEXP(ComplexNumber)</math>.
 
*The syntax is to calculate IMEXP in ZOS is <math>IMEXP(ComplexNumber)</math>.
Line 25: Line 27:
 
#=IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
 
#=IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
 
#=IMEXP("4-5i") = 15.4874305606508+52.355491418482i
 
#=IMEXP("4-5i") = 15.4874305606508+52.355491418482i
#=IMEXP("6") = 403.428793492735
+
#=IMEXP("6") = 403.428793492735+0i
 
#=IMEXP("2i") = -0.416146836547142+0.909297426825682i
 
#=IMEXP("2i") = -0.416146836547142+0.909297426825682i
#=IMEXP("0") = 1 and IMEXP("0i") = 1
+
#=IMEXP("0") = 1+0i and IMEXP("0i") = 1+0i
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|lNEoaXWkzvw|280|center|Exponential Form of Complex Number}}
  
 
==See Also==
 
==See Also==
Line 37: Line 43:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Exponential_function  Exponential function]
 
[http://en.wikipedia.org/wiki/Exponential_function  Exponential function]
 +
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:36, 19 July 2018

IMEXP(ComplexNumber)


  • is of the form x+iy.
    • IMEXP(), returns the exponential of a complex number.


Description

  • This function gives the exponential of a complex number.
  • In , is of the form , & are real numbers & is the imaginary unit. .
  • Euler's formula states that , for any real number and is the base of the natural logarithm.
  • The approximate value of the constant e=2.718281828459045 and it is equal to .
  • Let z be the Complex Number.Then the exponential of a complex number is : .
  • Here Sin and Cos are trignometric functions. y is angle value in radians.
  • When imaginary part is '0', it will give the exponent value of the real number. i.e when imaginary number is '0'.
  • The Complex exponential function is denoted by "cis(x)"(Cosine plus iSine)
  • We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.

ZOS

  • The syntax is to calculate IMEXP in ZOS is .
    • is of the form a+bi.
  • For e.g.,IMEXP("0.3-0.54i")
IMEXP

Examples

  1. =IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
  2. =IMEXP("4-5i") = 15.4874305606508+52.355491418482i
  3. =IMEXP("6") = 403.428793492735+0i
  4. =IMEXP("2i") = -0.416146836547142+0.909297426825682i
  5. =IMEXP("0") = 1+0i and IMEXP("0i") = 1+0i

Related Videos

Exponential Form of Complex Number

See Also

References

Exponential function