Difference between revisions of "Manuals/calci/MDETERM"

From ZCubes Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''MDETERM(arr)'''</div><br/>
+
<div style="font-size:30px">'''MDETERM(a)'''</div><br/>
*where <math>arr</math> is the array of numeric elements
+
*<math>a</math> is the array of numeric elements.
 
+
**MDETERM(), returns the matrix determinant of an array.
  
 
==Description==
 
==Description==
 
*This function gives the determinant value of a matrix.
 
*This function gives the determinant value of a matrix.
*To calculate the determinant of the matrix we can choose only square matrix.
+
*To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
*i.e., Number rows and number of columns should be equal.Determinant of the identity matrix is always 1. *Determinant of the matrix A is denoted by det(A) or |A|.
+
*Determinant of the identity matrix is always 1.
*Let A be 2x2 matrix with the elements A=[a   b
+
*Determinant of the matrix <math>A</math> is denoted by <math>det(A)</math> or <math>|A|</math>.
                                          c   d].
+
*Let <math>A</math> be 2x2 matrix with the elements  
*Then det(A)=ad-bc, where a,b,c,d all are real numbers.
+
<math>A = \begin{bmatrix}
*Let A be the 3x3 matrix with the elements A=[a   b     c
+
a & b \\
                                              d   e   f
+
c & d \\
                                              g     h   i].
+
\end{bmatrix}
Then |A|=a|e   f     -b|d   f     +c|d   e
+
</math>
          h   i|       g    i|       g    h|
+
*Then <math>det(A)=ad-bc</math>, where <math>a,b,c,d</math> all are real numbers.
                =a(ei-fh) -b(di-fg)+c(dh-eg)  
+
*Let <math>A</math> be the 3x3 matrix with the elements  
*Let A be a square matrix of order n. Write A = (a_ij),
+
<math>A = \begin{bmatrix}
*Where aij is the entry on the i number of rows and j number of columns and i=1 to n &j=1 to n.
+
a & b & c \\
*For any i and j, set Aij (called the cofactors), then the general formula for determinant of the matrix A ,                                                         |A|=summation (j=1 to n)a_ij A_ij, for any fixed i.
+
d & e & f \\
Also|A|=summation (i=1 to n)a_ij A_ij, for any fixed j.
+
g & h & i \\
 +
\end{bmatrix}
 +
</math>
 +
Then <math>|A|=a\begin{vmatrix}
 +
e & f \\
 +
h & i
 +
\end{vmatrix} -b\begin{vmatrix}
 +
d & f \\
 +
g & i
 +
\end{vmatrix} +c\begin{vmatrix}
 +
d & e \\
 +
g & h  
 +
\end{vmatrix}</math>:
 +
<math>|A| =a(ei-fh)-b(di-fg)+c(dh-eg)</math>
 +
*Let <math>A</math> be a square matrix of order <math>n</math>. Write <math>A = (a_{ij})</math>,
 +
*Where <math>a_{ij}</math> is the entry on the <math>i^{th}</math> row and <math>j^{th}</math> column and <math>i=1</math> to <math>n</math> & <math>j=1</math> to <math>n</math>.
 +
*For any <math>i</math> and <math>j</math>, set <math>A_{ij}</math> (called the co-factors), then the general formula for determinant of the matrix <math>A</math> is,
 +
<math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>.
 +
Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>.
 
*This function will give the result as error when  
 
*This function will give the result as error when  
 
  1. Any one of the element in array is empty or contain non-numeric
 
  1. Any one of the element in array is empty or contain non-numeric
 
  2. Number of rows is not equal to number of columns
 
  2. Number of rows is not equal to number of columns
 +
 +
==ZOS==
 +
*The syntax is to calculate determinant of a matrix in ZOS is <math>MDETERM(a)</math>.
 +
**<math>a</math> is the array of numeric elements.
 +
*For e.g.,MDETERM([[2.3,4.1,5.9],[3.5,6.2,1.3],[2.8,9.1,8.4]])
  
 
==Examples==
 
==Examples==
 +
#=MDETERM([[6,4,8],[3,6,1],[2,4,5]]) = 104
 +
#=MDETERM([[-5,10],[6,-8]]) = -20
 +
#=MDETERM([[1,0,2,1],[4,0,2,-1],[1,4,5,2],[3,1,2,0]]) = 17
 +
#=MDETERM([1,2,3],[5,2,8]) = NAN
  
 +
==Related Videos==
  
 +
{{#ev:youtube|OU9sWHk_dlw|280|center|Determinant of Matrix}}
  
 
==See Also==
 
==See Also==
 +
*[[Manuals/calci/MINVERSE  | MINVERSE ]]
 +
*[[Manuals/calci/MMULT  | MMULT ]]
  
 
==References==
 
==References==
 +
[http://en.wikipedia.org/wiki/Determinant Determinant ]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:01, 24 July 2018

MDETERM(a)


  • is the array of numeric elements.
    • MDETERM(), returns the matrix determinant of an array.

Description

  • This function gives the determinant value of a matrix.
  • To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
  • Determinant of the identity matrix is always 1.
  • Determinant of the matrix is denoted by or .
  • Let be 2x2 matrix with the elements

  • Then , where all are real numbers.
  • Let be the 3x3 matrix with the elements

Then :

  • Let be a square matrix of order . Write ,
  • Where is the entry on the row and column and to & to .
  • For any and , set (called the co-factors), then the general formula for determinant of the matrix is,

, for any fixed . Also, for any fixed .

  • This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric
2. Number of rows is not equal to number of columns

ZOS

  • The syntax is to calculate determinant of a matrix in ZOS is .
    • is the array of numeric elements.
  • For e.g.,MDETERM([[2.3,4.1,5.9],[3.5,6.2,1.3],[2.8,9.1,8.4]])

Examples

  1. =MDETERM([[6,4,8],[3,6,1],[2,4,5]]) = 104
  2. =MDETERM([[-5,10],[6,-8]]) = -20
  3. =MDETERM([[1,0,2,1],[4,0,2,-1],[1,4,5,2],[3,1,2,0]]) = 17
  4. =MDETERM([1,2,3],[5,2,8]) = NAN

Related Videos

Determinant of Matrix

See Also

References

Determinant