Difference between revisions of "Manuals/calci/FISHER"

From ZCubes Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''FISHER(x)'''</div><br/>
+
<div style="font-size:30px">'''FISHER (Number)'''</div><br/>
*<math>x</math> is the number.
+
*<math>Number</math> is the value to find the Fisher transformation.
 +
**FISHER(), returns the Fisher transformation.
 +
 
 
==Description==
 
==Description==
*This function gives the value of Fisher Transformation at <math>x</math>.
+
*This function gives the value of Fisher Transformation for the given number.
 
*Fisher Transformation is used  to test the hypothesis of two correlations.
 
*Fisher Transformation is used  to test the hypothesis of two correlations.
 
*It is mainly associated with the Pearson Product-Moment Correlation coefficient for bi-variate normal observations.
 
*It is mainly associated with the Pearson Product-Moment Correlation coefficient for bi-variate normal observations.
*In <math>FISHER(X)</math>, <math>x</math> is the number which ranges between -1 to +1.  
+
*In <math>FISHER(Number)</math>, <math>Number</math> is the value which ranges between -1 to +1.  
*The transformation is defined by : <math>z=\frac{1}{2} ln(1+\frac{x}{1-x})= arctanh(x)</math>, where <math>ln</math> is the natural logarithm function and <math>arctanh</math> is the Inverse Hyperbolic function.  
+
*The transformation is defined by : <math>z=\frac{1}{2} ln(1+\frac{x}{1-x})= arctanh(x)</math>
 +
where <math> ln </math> is the natural logarithm function and <math> arctanh </math> is the Inverse Hyperbolic function.  
 
*This function will give the result as error when:
 
*This function will give the result as error when:
  1.<math>x</math> is non-numeric
+
  1.<math>Number</math> is non-numeric
  2.<math>x\le-1</math> or <math>x\ge<math> .
+
  2.<math>Number \le -1</math> or <math>Number \ge 1</math>.
 +
 
 +
==ZOS==
 +
*The syntax is to calculate FISHER in ZOS is <math>FISHER(Number)</math>.
 +
**<math>Number</math> is the value to find the Fisher transformation.
 +
*For e.g.,FISHER(0.1..0.4..0.1)
 +
{{#ev:youtube|53cqYfgeMzA|280|center|Fisher Transformation}}
  
 
==Examples==
 
==Examples==
  
#FISHER(0.5642)=0.6389731838284958
+
#FISHER(0.5642) = 0.6389731838284958
#FISHER(0)=0
+
#FISHER(0)= 0
#FISHER(-0.3278)=-0.3403614004970268
+
#FISHER(-0.3278) = -0.3403614004970268
#FISHER(1)=Infinity
+
#FISHER(1) = Infinity
#FISHER(-1)=Infinity
+
#FISHER(-1) = -Infinity
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|I0SjHVOHztc|280|center|Sampling Distributions}}
  
 
==See Also==
 
==See Also==
Line 23: Line 36:
 
*[[Manuals/calci/FISHERINV  | FISHERINV ]]
 
*[[Manuals/calci/FISHERINV  | FISHERINV ]]
  
 +
==References==
 +
[http://en.wikipedia.org/wiki/F-distribution  Fisher Distribution]
  
==References==
+
 
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function]
+
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |   Z3 home ]]

Latest revision as of 16:01, 7 August 2018

FISHER (Number)


  • is the value to find the Fisher transformation.
    • FISHER(), returns the Fisher transformation.

Description

  • This function gives the value of Fisher Transformation for the given number.
  • Fisher Transformation is used to test the hypothesis of two correlations.
  • It is mainly associated with the Pearson Product-Moment Correlation coefficient for bi-variate normal observations.
  • In , is the value which ranges between -1 to +1.
  • The transformation is defined by :

where is the natural logarithm function and is the Inverse Hyperbolic function.

  • This function will give the result as error when:
1. is non-numeric
2. or .

ZOS

  • The syntax is to calculate FISHER in ZOS is .
    • is the value to find the Fisher transformation.
  • For e.g.,FISHER(0.1..0.4..0.1)
Fisher Transformation

Examples

  1. FISHER(0.5642) = 0.6389731838284958
  2. FISHER(0)= 0
  3. FISHER(-0.3278) = -0.3403614004970268
  4. FISHER(1) = Infinity
  5. FISHER(-1) = -Infinity

Related Videos

Sampling Distributions

See Also

References

Fisher Distribution