Difference between revisions of "Manuals/calci/FISHERINV"
Jump to navigation
Jump to search
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''FISHERINV( | + | <div style="font-size:30px">'''FISHERINV(Number)'''</div><br/> |
− | *<math> | + | *<math>Number</math> is the value to find inverse of fisher transformation. |
+ | **FISHERINV(), returns the inverse of the Fisher transformation. | ||
==Description== | ==Description== | ||
Line 8: | Line 9: | ||
*It can be used to construct a confidence interval. | *It can be used to construct a confidence interval. | ||
*A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate. | *A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate. | ||
− | This function will give the result as error when the <math> | + | This function will give the result as error when the <math>Number</math> value is non-numeric. |
==ZOS== | ==ZOS== | ||
− | *The syntax is to calculate FISHERINV in ZOS is <math>FISHERINV( | + | *The syntax is to calculate FISHERINV in ZOS is <math>FISHERINV(Number)</math>. |
− | **<math> | + | **<math>Number</math> is the value to find inverse of fisher transformation. |
− | *For e.g., | + | *For e.g.,FISHERINV(0.4521..0.507..0.01) |
{{#ev:youtube|eGv4DvXyLhc|280|center|Inverse Fisher transformation}} | {{#ev:youtube|eGv4DvXyLhc|280|center|Inverse Fisher transformation}} | ||
Line 34: | Line 35: | ||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/F-distribution Fisher Distribution] | [http://en.wikipedia.org/wiki/F-distribution Fisher Distribution] | ||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:01, 7 August 2018
FISHERINV(Number)
- is the value to find inverse of fisher transformation.
- FISHERINV(), returns the inverse of the Fisher transformation.
Description
- This function gives the inverse of the Fisher transformation.
- We use this to test the correlations between set of data.
- The Inverse of the Fisher transformation is: i.e , then
- It can be used to construct a confidence interval.
- A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the value is non-numeric.
ZOS
- The syntax is to calculate FISHERINV in ZOS is .
- is the value to find inverse of fisher transformation.
- For e.g.,FISHERINV(0.4521..0.507..0.01)
Examples
- FISHERINV(0.6389731838) = 0.56419999998
- FISHERINV(0) = 0
- FISHERINV(0.1234) = 0.1227774315035342
- FISHERINV(1) = 0.761594155955765
- FISHERINV(-0.4296) = -0.4049869686465480
Related Videos
See Also
References