Difference between revisions of "Manuals/calci/FISHERINV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FISHERINV'''('''x''') '''x'''   is the value to perform the inverse of the transformation. </div> ---- <...")
 
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''FISHERINV(Number)'''</div><br/>
 +
*<math>Number</math> is the value to find inverse of fisher transformation.
 +
**FISHERINV(), returns the inverse of the Fisher transformation.
  
'''FISHERINV'''('''x''')
+
==Description==
 +
*This function gives the inverse of the Fisher transformation.
 +
*We use this to test the correlations between set of data.
 +
*The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}}</math> i.e <math>y=FISHER(x)</math>, then <math>FISHERINV(y)=x</math>
 +
*It can be used to construct a confidence interval.
 +
*A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
 +
This function will give the result as error when the <math>Number</math> value is non-numeric.
  
'''x'''   is the value to perform the inverse of the transformation.
+
==ZOS==
 +
*The syntax is to calculate FISHERINV in ZOS is <math>FISHERINV(Number)</math>.
 +
**<math>Number</math> is the value to find inverse of fisher transformation.
 +
*For e.g.,FISHERINV(0.4521..0.507..0.01)
 +
{{#ev:youtube|eGv4DvXyLhc|280|center|Inverse Fisher transformation}}
  
</div>
+
==Examples==
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
  
It calculates the inverse of the Fisher transformation.
+
#FISHERINV(0.6389731838) = 0.56419999998
 +
#FISHERINV(0) = 0
 +
#FISHERINV(0.1234) = 0.1227774315035342
 +
#FISHERINV(1) = 0.761594155955765
 +
#FISHERINV(-0.4296) = -0.4049869686465480
  
</div>
+
==Related Videos==
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
·          When x is nonnumeric FISHERINV displays error.
+
{{#ev:youtube|I0SjHVOHztc|280|center|Sampling Distributions}}
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/CORREL  | CORREL ]]
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">FISHERINV</div></div>
+
*[[Manuals/calci/FISHER  | FISHER ]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"><font size="3"><font face="Times New Roman">''' <font size="3"><font face="Times New Roman">AVEDEV (N1, N2...)</font></font> <font size="3"><font face="Times New Roman">Where N1, N 2 ...   are positive integers.</font></font> '''</font></font></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
  
<font size="3"><font face="Times New Roman">Let’s see an example in (Column1 Row 1)</font></font>
+
==References==
 +
[http://en.wikipedia.org/wiki/F-distribution  Fisher Distribution]
  
<font size="3">FISHERINV (x)</font>
 
  
<font size="3">FISHERINV (C1R1)</font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
<font size="3">i.e. = FISHERINV (0.7753) is 0.65</font>
+
*[[ Z3 Z3 home ]]
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f " | 0.7753
 
| class="sshl_f" | 0.650001
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f   " |
 
|
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Latest revision as of 16:01, 7 August 2018

FISHERINV(Number)


  • is the value to find inverse of fisher transformation.
    • FISHERINV(), returns the inverse of the Fisher transformation.

Description

  • This function gives the inverse of the Fisher transformation.
  • We use this to test the correlations between set of data.
  • The Inverse of the Fisher transformation is: i.e , then
  • It can be used to construct a confidence interval.
  • A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the  value is non-numeric.

ZOS

  • The syntax is to calculate FISHERINV in ZOS is .
    • is the value to find inverse of fisher transformation.
  • For e.g.,FISHERINV(0.4521..0.507..0.01)
Inverse Fisher transformation

Examples

  1. FISHERINV(0.6389731838) = 0.56419999998
  2. FISHERINV(0) = 0
  3. FISHERINV(0.1234) = 0.1227774315035342
  4. FISHERINV(1) = 0.761594155955765
  5. FISHERINV(-0.4296) = -0.4049869686465480

Related Videos

Sampling Distributions

See Also

References

Fisher Distribution