Difference between revisions of "Manuals/calci/GAMMADIST"

From ZCubes Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''GAMMADIST(x,alpha,beta,cu)'''</div><br/>
+
<div style="font-size:30px">'''GAMMADIST(x,alpha,beta,cumulative,accuracy)'''</div><br/>
*<math>x</math> is the value of the distribution,
+
*<math>x</math> is the value of the distribution.
*<math>alpha</math> and <math>beta</math> are the value of the parameters
+
*<math>alpha</math> and <math>beta</math> are the value of the parameters.
*<math>cu</math> is the logical value like true or false.
+
*<math>cumulative</math> is the logical value like true or false.
 +
*<math>accuracy</math> gives accurate value of the solution.
 +
**GAMMADIST(), returns the gamma distribution.
  
 
==Description==
 
==Description==
Line 8: Line 10:
 
*The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
 
*The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
 
*This distribution is the Continuous Probability Distribution with two parameters <math>\alpha</math> and <math>\beta</math>.
 
*This distribution is the Continuous Probability Distribution with two parameters <math>\alpha</math> and <math>\beta</math>.
*In  <math>GAMMADIST(x,\alpha,\beta,cu)</math>, <math>x</math> is the value of the distribution, <math>\alpha</math> is called shape parameter and <math>\beta</math> is the rate parameter of the distribution and <math>cu</math> is the logical value like TRUE or FALSE.
+
*In  <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>, <math>x</math> is the value of the distribution, <math>\alpha</math> is called shape parameter and <math>\beta</math> is the rate parameter of the distribution and <math>cumulative</math> is the logical value like TRUE or FALSE.
*If <math>cu</math> is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.  
+
*If <math>cumulative</math> is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
 +
*<math>cumulative</math> gives accurate value of the solution.  
 
*The gamma function is defined by :
 
*The gamma function is defined by :
 
<math>Gamma(t) = \int\limits_{0}^{\infty}x^{t-1} e^{-x} dx</math>.  
 
<math>Gamma(t) = \int\limits_{0}^{\infty}x^{t-1} e^{-x} dx</math>.  
 
*It is for all complex numbers except the negative integers and zero.  
 
*It is for all complex numbers except the negative integers and zero.  
 
*The Probability Density Function of Gamma function using Shape, rate parameters is:
 
*The Probability Density Function of Gamma function using Shape, rate parameters is:
<math> f(x; \alpha,\beta)=\frac{x^{\alpha-1} e^{-\frac {x}{\beta}}}{\beta^{\alpha} Gamma(\alpha)}</math>, for  
+
<math> f(x; \alpha,\beta)=\frac{x^{\alpha-1} e^{-\frac {x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}</math>, for  
:<math>x, \alpha , \beta > 0 </math>, where <math>e</math> is the natural number(e = 2.71828...),  <math>\alpha</math> is the number of occurrences of an event, and <math>Gamma(\alpha)</math> is the Gamma function.
+
:<math>x, \alpha , \beta > 0 </math>, where <math>e</math> is the natural number(e = 2.71828...),  <math>\alpha</math> is the number of occurrences of an event, and <math>\Gamma(\alpha)</math> is the Gamma function.
 
*The Standard Gamma Probability Density function is:  
 
*The Standard Gamma Probability Density function is:  
<math>f(x,\alpha)=\frac{x^{\alpha-1} e^{-x}}{Gamma(\alpha)}</math>.  
+
<math>f(x,\alpha)=\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}</math>.  
 
*The  Cumulative Distribution  Function of Gamma is :
 
*The  Cumulative Distribution  Function of Gamma is :
<math>F(x;\alpha,\beta)=\frac{\gamma(\alpha,\frac{x}{\beta})}{Gamma(\alpha)}</math>, or  
+
<math>F(x;\alpha,\beta)=\frac{\gamma(\alpha,\frac{x}{\beta})}{\Gamma(\alpha)}</math>, or  
 
:<math>F(x;\alpha,\beta)= e^{-\frac {x}{\beta}} \sum_{i=k}^{\infty} \frac{1}{i!} (\frac{x}{\beta})^i</math> for any positive integer <math>k</math>.  
 
:<math>F(x;\alpha,\beta)= e^{-\frac {x}{\beta}} \sum_{i=k}^{\infty} \frac{1}{i!} (\frac{x}{\beta})^i</math> for any positive integer <math>k</math>.  
 
*When alpha is a positive integer, then the distribution is called Erlang distribution.  
 
*When alpha is a positive integer, then the distribution is called Erlang distribution.  
Line 26: Line 29:
 
*This function shows the result as error when
 
*This function shows the result as error when
 
  1.Any one of the argument is non numeric
 
  1.Any one of the argument is non numeric
  2.<math>x<0</math>, <math>\alpha \le 0</math> or <math>\beta \le 0</math>
+
  2.<math>x<0</math>, <math>\alpha \le 0</math> or <math>\beta \le 0</math>.
 +
 
 +
==ZOS==
 +
*The syntax is to calculate GAMMADIST in ZOS is <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>.
 +
**<math>x</math> is the value of the distribution,
 +
**<math>alpha</math> and <math>beta</math> are the value of the parameters
 +
**<math>cumulative</math> is the logical value like true or false.
 +
**<math>accuracy</math> gives accurate value of the solution.
 +
*For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)
 +
GAMMADIST(10.45,2.8,6.4,FALSE,0.9)
 +
{{#ev:youtube|l_qRjj8bUdw|280|center|Gamma Distribution}}
  
 
==Examples==
 
==Examples==
 +
#GAMMADIST(8.15372,5,7,TRUE)=0.006867292
 +
#GAMMADIST(20.78542,2,6,TRUE)=0.860283293
 +
#GAMMADIST(20.78542,2,6,FALSE)=0.01806997
 +
#GAMMADIST(45.6523,9,4,FALSE)=0.019724471
 +
#GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
 +
#GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}}
  
 
==See Also==
 
==See Also==
Line 36: Line 59:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Gamma_distribution| Gamma Distribution]
+
[http://en.wikipedia.org/wiki/Gamma_distribution Gamma Distribution]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:08, 7 August 2018

GAMMADIST(x,alpha,beta,cumulative,accuracy)


  • is the value of the distribution.
  • and are the value of the parameters.
  • is the logical value like true or false.
  • gives accurate value of the solution.
    • GAMMADIST(), returns the gamma distribution.

Description

  • This function gives the value of the Gamma Distribution.
  • The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
  • This distribution is the Continuous Probability Distribution with two parameters and .
  • In , is the value of the distribution, is called shape parameter and is the rate parameter of the distribution and is the logical value like TRUE or FALSE.
  • If is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
  • gives accurate value of the solution.
  • The gamma function is defined by :

.

  • It is for all complex numbers except the negative integers and zero.
  • The Probability Density Function of Gamma function using Shape, rate parameters is:

, for

, where is the natural number(e = 2.71828...), is the number of occurrences of an event, and is the Gamma function.
  • The Standard Gamma Probability Density function is:

.

  • The Cumulative Distribution Function of Gamma is :

, or

for any positive integer .
  • When alpha is a positive integer, then the distribution is called Erlang distribution.
  • If the shape parameter is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
  • For a positive integer , when , , and , GAMMADIST returns (1 - CHIDIST(x)) with degrees of freedom.
  • This function shows the result as error when
1.Any one of the argument is non numeric
2.,  or .

ZOS

  • The syntax is to calculate GAMMADIST in ZOS is .
    • is the value of the distribution,
    • and are the value of the parameters
    • is the logical value like true or false.
    • gives accurate value of the solution.
  • For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)

GAMMADIST(10.45,2.8,6.4,FALSE,0.9)

Gamma Distribution

Examples

  1. GAMMADIST(8.15372,5,7,TRUE)=0.006867292
  2. GAMMADIST(20.78542,2,6,TRUE)=0.860283293
  3. GAMMADIST(20.78542,2,6,FALSE)=0.01806997
  4. GAMMADIST(45.6523,9,4,FALSE)=0.019724471
  5. GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
  6. GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564

Related Videos

GAMMA Distribution

See Also

References

Gamma Distribution