Difference between revisions of "Manuals/calci/KURT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''KURT'''(N'''1''',N2,...) '''Where N1,N2,.... '''are the arguments to calculate the kurtosis. </div> ---- <...")
 
 
(29 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''KURT()'''</div><br/>
 +
*Parameters are  any values to calculate kurtosis.
 +
**KURT(), returns the kurtosis of a data set.
  
'''KURT'''(N'''1''',N2,...)
+
==Description==
 +
*This function gives the value of Kurtosis of a given set.
 +
*Kurtosis is  the peak or flatness of a frequency distribution graph especially with respect to the concentration of values near the Mean as compared with the Normal Distribution.
 +
*A normal distribution  has a Kurtosis of 3.
 +
*Distributions having higher Kurtosis have flatter tails or more extreme values that phenomenon called 'leptokurtosis' also it is the positive excess Kurtosis , and those with lower Kurtosis have fatter middles or fewer extreme value that phenomenon called 'Platykurtosis' also it is the negative excess Kurtosis.
 +
*Example for positive Kurtosis(leptokurtosis) is Exponential distribution, Poisson distribution, Laplace Distribution.
 +
*Example for Negative Kurtosis(platykurtosis) is Bernoulli distribution, Uniform distribution.
 +
*Kurtosis has no units.
 +
*Kurtosis is defined by:
 +
*Kurtosis=:
 +
<math>\frac{n(n+1)}{(n-1)(n-2)(n-3)} \frac{\sum (x_{i}-\bar{x})^4}{s}- \frac{3(n-1)^2}{(n-2)(n-3)}</math>, where <math>s</math> is the Sample Standard Deviation.<math>\bar{x}</math> is the Arithmetic Mean.
 +
*In this function arguments may be any type like numbers,names,arrays or references that contain numbers.
 +
*We can give logical values and text references also directly.
 +
*Suppose the referred argument contains any null cells, logical values like that values are not considered.
 +
*This function will return the result as error when
 +
1.Any one of the argument is non-numeric.
 +
2.Suppose the number of data points are less than four or the standard deviation of the sample is zero
 +
3.The referred arguments could not convert
 +
  in to numbers.
 +
* When calculating kurtosis, a result of +3.00 indicates the absence of kurtosis (distribution is mesokurtic).
 +
*For simplicity in its interpretation, some statisticians adjust this result to zero (i.e. kurtosis minus 3 equals zero), and then any reading other than zero is referred to as excess kurtosis.  
 +
*Negative numbers indicate a platykurtic distribution and positive numbers indicate a leptokurtic distribution.
 +
*The below table is listing the Kurtosis excess for the number of common distributions:
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
! Distribution !! Kurtosis excess
 +
|-
 +
| Bernoulli distribution || <math>\frac{1}{1-p}+\frac{1}{p}-6</math>
 +
|-
 +
| Beta distribution ||<math>\frac{6[a^3+a^2(1-2b)+b^2(1+b)-2ab(2+b)]}{ab(2+a+b)(3+a+b)}</math>
 +
|-
 +
| Binomial distribution || <math>\frac{6p^2-6p+1}{np(1-p)}</math>
 +
|-
 +
| Chi squared distribution || <math>\frac{12}{r}</math>
 +
|-
 +
| Exponential distribution || 6
 +
|-
 +
| Gamma distribution || <math> \frac {6}{a}</math>
 +
|-
 +
| Log normal distribution ||<math>e^{4S^2}+2e^{3S^2}+3e^{2S^2}-6</math>
 +
|-
 +
| Negative binomial distribution ||<math>\frac{6-p(6-p)}{r(1-p)}</math>
 +
|-
 +
| Normal distribution || 0
 +
|-
 +
| Poisson distribution || <math>\frac{1}{v}</math>
 +
|-
 +
| Student's t distribution ||<math>\frac{6}{n-4}</math>
 +
|}
  
'''Where N1,N2,.... '''are the arguments to calculate the kurtosis.
+
==ZOS==
 +
*The syntax is to calculate KURTOSIS in ZOS is <math>KURT()</math>
 +
**Parameters are any values to calculate kurtosis.
 +
*For e.g., KURT([-1..-10,20..25..0.5])
 +
{{#ev:youtube|YqusfrKpWEA|280|center|KURTOSIS}}
  
</div>
+
==Examples==
----
+
{| class="wikitable"
<div id="1SpaceContent" class="zcontent" align="left">
+
|+Spreadsheet
 
+
|-
This function calculates the relative peakedness or flatness of a distribution compared with the normal distribution.
+
! !! A !! B !! C !! D!! E
 
+
|-
</div>
+
! 1
----
+
| 14 || 11 || 23 || 54 || 38
<div id="7SpaceContent" class="zcontent" align="left">
+
|-
 
+
! 2
·          Arguments can be numbers or names, arrays, or references.
+
| 6 || 7 || 8 || 9 || 10
 
+
|-
·          Logical values and text representations of numbers are calculated.
+
! 3
 
+
| 1898  || 1987  || 1786  ||1947 ||
·        KURT shows the error value, when there are fewer than four data points, or the SD of the sample equals zero.
+
|-
 
+
! 4
Formulas:-
+
| 26 ||16  || 12  || ||
 
+
|}
·          Kurtosis is defined as:
+
# =KURT(A1:E1) = -0.8704870491886512
 
+
# =KURT(A2:E2) = -1.199999999
where s is the sample standard deviation.
+
# =KURT(A3:D3) = 0.8709011137293157
 
+
# =KURT(A4:C4) = NAN
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
KURT
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
{| class="MsoNormalTable" cellspacing="3"
 
| valign="top" |
 
<font face="Arial">Lets see an example,</font>
 
 
 
<font face="Arial">KURT(N1,N2,....)</font>
 
 
 
<font face="Arial"></font>
 
 
 
'''<font face="Arial">B</font>'''
 
 
 
<font face="Arial"></font>8
 
 
 
9
 
 
 
10
 
 
 
4
 
 
 
5
 
  
3
+
==Related Videos==
  
10
+
{{#ev:youtube|HnMGKsupF8Q|280|center|Kurtosis}}
  
<font face="Arial"><nowiki>=KURT(B2:B8) is -2.0947</nowiki></font>
+
==See Also==
 +
*[[Manuals/calci/SKEW  | SKEW ]]
 +
*[[Manuals/calci/STDEV  | STDEV ]]
 +
*[[Manuals/calci/STDEVP  | STDEVP ]]
  
<font face="Arial"></font>
+
==References==
|}
+
[http://en.wikipedia.org/wiki/Kurtosis  Kurtosis]
  
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE3" class="SpreadSheet blue"
+
*[[Z_API_Functions | List of Main Z Functions]]
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 8
 
| class="sshl_f" | -2.094675
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f  " | 9
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f  " | 10
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f  " | 4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f  " | 5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f  " | 3
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f " | 10
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 16:22, 7 August 2018

KURT()


  • Parameters are any values to calculate kurtosis.
    • KURT(), returns the kurtosis of a data set.

Description

  • This function gives the value of Kurtosis of a given set.
  • Kurtosis is the peak or flatness of a frequency distribution graph especially with respect to the concentration of values near the Mean as compared with the Normal Distribution.
  • A normal distribution has a Kurtosis of 3.
  • Distributions having higher Kurtosis have flatter tails or more extreme values that phenomenon called 'leptokurtosis' also it is the positive excess Kurtosis , and those with lower Kurtosis have fatter middles or fewer extreme value that phenomenon called 'Platykurtosis' also it is the negative excess Kurtosis.
  • Example for positive Kurtosis(leptokurtosis) is Exponential distribution, Poisson distribution, Laplace Distribution.
  • Example for Negative Kurtosis(platykurtosis) is Bernoulli distribution, Uniform distribution.
  • Kurtosis has no units.
  • Kurtosis is defined by:
  • Kurtosis=:

, where is the Sample Standard Deviation. is the Arithmetic Mean.

  • In this function arguments may be any type like numbers,names,arrays or references that contain numbers.
  • We can give logical values and text references also directly.
  • Suppose the referred argument contains any null cells, logical values like that values are not considered.
  • This function will return the result as error when
1.Any one of the argument is non-numeric.
2.Suppose the number of data points are less than four or the standard deviation of the sample is zero
3.The referred arguments could not convert
  in to numbers.
  • When calculating kurtosis, a result of +3.00 indicates the absence of kurtosis (distribution is mesokurtic).
  • For simplicity in its interpretation, some statisticians adjust this result to zero (i.e. kurtosis minus 3 equals zero), and then any reading other than zero is referred to as excess kurtosis.
  • Negative numbers indicate a platykurtic distribution and positive numbers indicate a leptokurtic distribution.
  • The below table is listing the Kurtosis excess for the number of common distributions:
Spreadsheet
Distribution Kurtosis excess
Bernoulli distribution
Beta distribution
Binomial distribution
Chi squared distribution
Exponential distribution 6
Gamma distribution
Log normal distribution
Negative binomial distribution
Normal distribution 0
Poisson distribution
Student's t distribution

ZOS

  • The syntax is to calculate KURTOSIS in ZOS is
    • Parameters are any values to calculate kurtosis.
  • For e.g., KURT([-1..-10,20..25..0.5])
KURTOSIS

Examples

Spreadsheet
A B C D E
1 14 11 23 54 38
2 6 7 8 9 10
3 1898 1987 1786 1947
4 26 16 12
  1. =KURT(A1:E1) = -0.8704870491886512
  2. =KURT(A2:E2) = -1.199999999
  3. =KURT(A3:D3) = 0.8709011137293157
  4. =KURT(A4:C4) = NAN

Related Videos

Kurtosis

See Also

References

Kurtosis