Difference between revisions of "Manuals/calci/PERCENTRANK"
Jump to navigation
Jump to search
(14 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''PERCENTRANK( | + | <div style="font-size:30px">'''PERCENTRANK (Array,Number,Significance) '''</div><br/> |
− | *<math> | + | *<math>Array</math> is the set of data and <math> Number</math> is the value to find the rank. |
− | + | **PERCENTRANK(),returns the percentage rank of a value in a data set. | |
==Description== | ==Description== | ||
Line 8: | Line 8: | ||
*For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank. | *For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank. | ||
*Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests. | *Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests. | ||
− | * To find the percentile rank of a score is :<math>PR \%= \frac {L+( 0.5*S )}{N} | + | * To find the percentile rank of a score is :<math>PR \%= \frac {L+( 0.5*S )}{N}</math> |
Where, | Where, | ||
− | L = Number of below rank, | + | <math>L</math> = Number of below rank, |
− | S = Number of same rank, | + | <math>S</math> = Number of same rank, |
− | N = Total numbers. | + | <math>N</math> = Total numbers. |
− | *In PERCENTRANK( | + | *In <math>PERCENTRANK (Array,Number,Significance)</math>, <math>Array</math> is the array of numeric values and <math>Number</math> is the value to find the rank. |
+ | *This function gives the result as error when array is empty . | ||
− | + | ==Examples== | |
+ | 1. | ||
+ | {| class="wikitable" | ||
+ | |+Spreadsheet | ||
+ | |- | ||
+ | ! !! A !! B !! C !! D !! E | ||
+ | |- | ||
+ | ! 1 | ||
+ | | 3 || 4 || 1 || 2 ||1 | ||
+ | |} | ||
+ | =PERCENTRANK(A1:E1,2) = 0.5 | ||
− | + | 2. | |
− | + | {| class="wikitable" | |
− | + | |+Spreadsheet | |
− | + | |- | |
− | + | ! !! A !! B !! C !! D !! E !! F | |
− | + | |- | |
− | + | ! 1 | |
− | + | | 7 || 6 || 2 || 5 || 9 ||1 | |
− | + | |} | |
− | + | =PERCENTRANK(A1:F1,3) = 0.267 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | PERCENTRANK | ||
− | |||
− | |||
− | |||
− | |||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|aW2UZjoeljE|280|center|PERCENTRANK}} | |
− | + | ==See Also== | |
+ | *[[Manuals/calci/MAX | MAX ]] | ||
+ | *[[Manuals/calci/MIN | MIN ]] | ||
+ | *[[Manuals/calci/MEDIAN | MEDIAN ]] | ||
+ | *[[Manuals/calci/QUARTILE | QUARTILE ]] | ||
+ | *[[Manuals/calci/PERCENTILE | PERCENTILE ]] | ||
− | + | ==References== | |
+ | [http://en.wikipedia.org/wiki/Percentile_rank Percentile Rank ] | ||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[[ Z3 | Z3 home ]] | |
− |
Latest revision as of 15:56, 8 August 2018
PERCENTRANK (Array,Number,Significance)
- is the set of data and is the value to find the rank.
- PERCENTRANK(),returns the percentage rank of a value in a data set.
Description
- This function gives the percentage rank of a value in a given set of numbers.
- To calculate the relative standing of a data set we can use this function.
- For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank.
- Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests.
- To find the percentile rank of a score is :
Where, = Number of below rank, = Number of same rank, = Total numbers.
- In , is the array of numeric values and is the value to find the rank.
- This function gives the result as error when array is empty .
Examples
1.
A | B | C | D | E | |
---|---|---|---|---|---|
1 | 3 | 4 | 1 | 2 | 1 |
=PERCENTRANK(A1:E1,2) = 0.5
2.
A | B | C | D | E | F | |
---|---|---|---|---|---|---|
1 | 7 | 6 | 2 | 5 | 9 | 1 |
=PERCENTRANK(A1:F1,3) = 0.267
Related Videos
See Also
References