Difference between revisions of "Manuals/calci/PERCENTRANK"

From ZCubes Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''PERCENTRANK(ar,x) '''</div><br/>
+
<div style="font-size:30px">'''PERCENTRANK (Array,Number,Significance) '''</div><br/>
*<math>ar</math>  is the array  data and  <math> x </math> is  the value
+
*<math>Array</math>  is the set of data and  <math> Number</math> is  the value to find the rank.
 +
**PERCENTRANK(),returns the percentage rank of a value in a data set.
  
 
==Description==
 
==Description==
Line 12: Line 13:
 
<math>S</math> = Number of same rank,
 
<math>S</math> = Number of same rank,
 
<math>N</math> = Total numbers.
 
<math>N</math> = Total numbers.
*In <math>PERCENTRANK(ar,x)</math>, <math>ar</math> is the array  of numeric values and <math>x</math> is the value to find the rank.  
+
*In <math>PERCENTRANK (Array,Number,Significance)</math>, <math>Array</math> is the array  of numeric values and <math>Number</math> is the value to find the rank.  
 
*This function gives the result as error when array is empty .
 
*This function gives the result as error when array is empty .
  
Line 36: Line 37:
 
| 7 || 6 || 2 || 5 || 9 ||1  
 
| 7 || 6 || 2 || 5 || 9 ||1  
 
|}
 
|}
  =PERCENTRANK(A1:F6,3) = 0.267
+
  =PERCENTRANK(A1:F1,3) = 0.267
  
 
==Related Videos==
 
==Related Videos==
Line 51: Line 52:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Percentile_rank Percentile Rank ]
 
[http://en.wikipedia.org/wiki/Percentile_rank Percentile Rank ]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:56, 8 August 2018

PERCENTRANK (Array,Number,Significance)


  • is the set of data and is the value to find the rank.
    • PERCENTRANK(),returns the percentage rank of a value in a data set.

Description

  • This function gives the percentage rank of a value in a given set of numbers.
  • To calculate the relative standing of a data set we can use this function.
  • For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank.
  • Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests.
  • To find the percentile rank of a score is :

Where, = Number of below rank, = Number of same rank, = Total numbers.

  • In , is the array of numeric values and is the value to find the rank.
  • This function gives the result as error when array is empty .

Examples

1.

Spreadsheet
A B C D E
1 3 4 1 2 1
=PERCENTRANK(A1:E1,2) = 0.5

2.

Spreadsheet
A B C D E F
1 7 6 2 5 9 1
=PERCENTRANK(A1:F1,3) = 0.267

Related Videos

PERCENTRANK

See Also

References

Percentile Rank