Difference between revisions of "Manuals/calci/PERCENTRANK"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''PERCENTRANK'''(Array, X ,k) where, '''Array''' -  represents set of data. '''X''' - represents the ran...")
 
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''PERCENTRANK (Array,Number,Significance) '''</div><br/>
 +
*<math>Array</math>  is the set of data and  <math> Number</math> is  the value to find the rank.
 +
**PERCENTRANK(),returns the percentage rank of a value in a data set.
  
'''PERCENTRANK'''(Array, X ,k)
+
==Description==
 +
*This function gives the percentage rank of a value in a given set of numbers.
 +
*To calculate the relative standing of a data set we can use this function.
 +
*For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank.
 +
*Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests.
 +
* To find the percentile rank of a score is :<math>PR \%= \frac {L+( 0.5*S )}{N}</math>
 +
Where,
 +
<math>L</math> = Number of below rank,
 +
<math>S</math> = Number of same rank,
 +
<math>N</math> = Total numbers.
 +
*In <math>PERCENTRANK (Array,Number,Significance)</math>, <math>Array</math> is the array  of numeric values and <math>Number</math> is the value to find the rank.
 +
*This function gives the result as error when array is empty .
  
where,
+
==Examples==
 +
1.
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B !! C !! D !! E
 +
|-
 +
! 1
 +
| 3 || 4 || 1 || 2 ||1
 +
|}
 +
=PERCENTRANK(A1:E1,2) = 0.5
  
'''Array''' -  represents set of data.
+
2.
 
+
{| class="wikitable"
'''X''' - represents the rank for value.
+
|+Spreadsheet
 
+
|-
'''k''' - represents the number of significant digit for the returned percentage value.If omitted, it returns 3 digit after decimal point.
+
! !! A !! B !! C !! D !! E !! F
 +
|-
 +
! 1
 +
| 7 || 6 || 2 || 5 || 9 ||1
 +
|}
 +
=PERCENTRANK(A1:F1,3) = 0.267
  
</div>
+
==Related Videos==
----
 
<div id="1SpaceContent" class="zcontent" align="left">It returns the rank for data set as a percentage of the data set.</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
If k &lt; 1, PERCENTRANK returns the #ERROR.
+
{{#ev:youtube|aW2UZjoeljE|280|center|PERCENTRANK}}
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/MAX  | MAX ]]
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
*[[Manuals/calci/MIN  | MIN ]]
 +
*[[Manuals/calci/MEDIAN  | MEDIAN ]]
 +
*[[Manuals/calci/QUARTILE  | QUARTILE ]]
 +
*[[Manuals/calci/PERCENTILE  | PERCENTILE ]]
  
PERCENTRANK
+
==References==
 +
[http://en.wikipedia.org/wiki/Percentile_rank Percentile Rank ]
  
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
  
Lets see an example in (Column2, Row1)
 
  
<nowiki>=PERCENTRANK(R1C1:R6C1, 4)</nowiki>
+
*[[Z_API_Functions | List of Main Z Functions]]
 
 
PERCENTRANK returns 0.66667.
 
 
 
Cosider an another example
 
 
 
<nowiki>=PERCENTRANK([1,2,3,4,5,6], -1)</nowiki>
 
 
 
It returns #ERROR(K=-1).
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 5
 
| class="sshl_f" | 0.066667
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 7
 
| class="            SelectTD ChangeBGColor SelectTD" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class=" " | 18
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
| class=" " | 23
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
| class=" " | 41
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
| class=" " | 2
 
|
 
|
 
|
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 15:56, 8 August 2018

PERCENTRANK (Array,Number,Significance)


  • is the set of data and is the value to find the rank.
    • PERCENTRANK(),returns the percentage rank of a value in a data set.

Description

  • This function gives the percentage rank of a value in a given set of numbers.
  • To calculate the relative standing of a data set we can use this function.
  • For example, a test score that is greater than or equal to 50% of the scores of people taking the test is said to be at the 50th percentile rank.
  • Percentile ranks are commonly used to clarify the interpretation of scores on standardized tests.
  • To find the percentile rank of a score is :

Where, = Number of below rank, = Number of same rank, = Total numbers.

  • In , is the array of numeric values and is the value to find the rank.
  • This function gives the result as error when array is empty .

Examples

1.

Spreadsheet
A B C D E
1 3 4 1 2 1
=PERCENTRANK(A1:E1,2) = 0.5

2.

Spreadsheet
A B C D E F
1 7 6 2 5 9 1
=PERCENTRANK(A1:F1,3) = 0.267

Related Videos

PERCENTRANK

See Also

References

Percentile Rank