Difference between revisions of "Manuals/calci/GOLDENRATIO"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''GOLDENRATIO'''(phismall) where '''phismall''' is true or false </div> ---- <div id="1SpaceContent" cl...") |
|||
(10 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''GOLDENRATIO(phiSmall)'''</div><br/> |
+ | *where <math>phiSmall</math> is the logical value TRUE or FALSE. | ||
+ | **GOLDENRATIO() returns the ratio of the longer part divided by the smaller part is also equal to the whole length divided by the longer part. | ||
− | + | == Description == | |
− | + | *Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities. | |
+ | *Golden ratio is represented as '''φ(phi or Smallphi)''' and its conjugate is represented as '''Φ(Phi or capitalphi)'''. | ||
+ | *If 'a' and 'b' are two quantities with 'a>b', then | ||
− | + | φ = <math>\frac{(a + b)}{a}</math> = <math>\frac {a}{b}</math> | |
+ | *Using quadratic formula, golden ratio is represented as - | ||
− | </ | + | <math>\phi</math> = <math>\frac{(1 + \sqrt 5)}{2}</math> = 1.618033988749895 |
− | |||
− | < | ||
− | + | <math>\Phi</math> = <math>\frac{(1 - \sqrt 5)}{2}</math> = -0.6180339887498948 (Absolute value 0.6180339887498948 is considered as capitalphi) | |
− | </ | + | *Argument <math>phismall</math> can be logical values TRUE (or 1) or FALSE (or 0). Any other argument values are ignored and Calci assumes it to be TRUE or 1. |
− | + | *If argument <math>phismall</math> is omitted, Calci assumes it as TRUE or 1 and displays the output as ''0.6180339887498948''. | |
− | < | + | *If argument is invalid, Calci returns a #NULL error message. |
− | + | == Examples == | |
− | + | GOLDENRATIO(TRUE) ''returns 0.6180339887498948'', value of capitalphi Φ | |
− | |||
− | |||
− | GOLDENRATIO | + | GOLDENRATIO(1) ''returns 0.6180339887498948'', value of capitalphi Φ |
− | + | GOLDENRATIO(FALSE) ''returns 1.618033988749895'', value of smallphi φ | |
− | |||
− | |||
− | + | GOLDENRATIO() ''returns 0.6180339887498948'', value of capitalphi Φ | |
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|5zosU6XTgSY|280|center|GOLDENRATIO}} | |
− | + | == See Also == | |
− | + | *[[Manuals/calci/GOLDENANGLE | GOLDENANGLE]] | |
− | + | == References == | |
− | + | *[http://en.wikipedia.org/wiki/Golden_ratio Golden Ratio] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:25, 17 August 2018
GOLDENRATIO(phiSmall)
- where is the logical value TRUE or FALSE.
- GOLDENRATIO() returns the ratio of the longer part divided by the smaller part is also equal to the whole length divided by the longer part.
Description
- Two quantities are in the golden ratio if their ratio is the same as the ratio of their sum to the larger of the two quantities.
- Golden ratio is represented as φ(phi or Smallphi) and its conjugate is represented as Φ(Phi or capitalphi).
- If 'a' and 'b' are two quantities with 'a>b', then
φ = =
- Using quadratic formula, golden ratio is represented as -
= = 1.618033988749895
= = -0.6180339887498948 (Absolute value 0.6180339887498948 is considered as capitalphi)
- Argument can be logical values TRUE (or 1) or FALSE (or 0). Any other argument values are ignored and Calci assumes it to be TRUE or 1.
- If argument is omitted, Calci assumes it as TRUE or 1 and displays the output as 0.6180339887498948.
- If argument is invalid, Calci returns a #NULL error message.
Examples
GOLDENRATIO(TRUE) returns 0.6180339887498948, value of capitalphi Φ
GOLDENRATIO(1) returns 0.6180339887498948, value of capitalphi Φ
GOLDENRATIO(FALSE) returns 1.618033988749895, value of smallphi φ
GOLDENRATIO() returns 0.6180339887498948, value of capitalphi Φ
Related Videos
See Also
References