Difference between revisions of "Manuals/calci/LOGEST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''LOGEST'''('''Y, X''',C,stats) '''Where Y'''  is the set of y-values and X  is an optional set of x-values in...")
 
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''LOGEST (YRange,XRange,Constant,Stats)'''</div><br/>
  
'''LOGEST'''('''Y, X''',C,stats)
+
where,
 +
*<math>YRange</math> is a set of Y values,
 +
*<math>XRange</math> is an optional set of X values,
 +
*<math>Constant</math> is a logical value TRUE or FALSE, that decides whether to force the constant 'b' to 1,
 +
*<math>Stats</math> is a logical value TRUE or FALSE, that decides whether to return additional regression statistics.
 +
**LOGEST() is an array function that calculates the exponential curve that fits the data values and returns an array of values that describes the curve.
  
'''Where Y'''  is the set of y-values and X  is an optional set of x-values in the relationship y = b*m^x.
+
== Description ==
  
   C is a logical value specifying whether to force the constant b to equal 1 and stats are a logical value specifying whether to return additional regression statistics.</div>
+
*If 'YRange' is the set of dependent variable, 'XRange' is the set of independent variable, 'm' is a constant base for X value and 'b' is constant (Y-intercept),
----
+
then equation for curve is -
<div id="1SpaceContent" class="zcontent" align="left">
 
  
This function  calculate an exponential curve that fits your data and returns an array of values that describes the curve.
+
<math>Y= b*m^X</math>
  
  </div>
+
*For multiple ranges of X-values,
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
·          If you have only one independent x-variable, then you can obtain the y-intercept (b) values directly by using the following formula:
+
<math>Y = (b*(m1^{X1})*(m2^{X2})*......)</math>
 +
*Argument values <math>XRange</math> and <math>YRange</math> should be numeric, else Calci displays NaN error message.
 +
*The length of array of XRange values should be equal to length of array of YRange values, else Calci displays #NULL error message.
 +
*<math>Constant</math> is  a logical value that decides whether to make constant 'b' equal to 1.
 +
*If <math>Constant</math> = TRUE or omitted, 'b' is calculated normally. If <math>Constant</math> = FALSE, 'b' is made equal to 1.
 +
*<math>Stats</math> is a logical value that decides whether to display additional regression statistics.
 +
*If <math>Stats</math> = TRUE, calci returns additional regresstion statistics. If <math>Stats</math> = FALSE or omitted, Calci returns the values of 'm coefficients' and the constant 'b'.
 +
*When there is only one independent X variable, Y intercept (b) can be calculated using following formulas -
  
Y-intercept (b):<br />                  INDEX(LOGEST(Y, X),2)
+
<math>Y intercept (b) = INDEX(LOGEST(Y, X),2) </math>
 +
*The additional regression is displayed in the following format where each statistic value is described as below-
  
·          Use y = b*m^x equation is to predict future values of y
+
{| class="wikitable"
 +
|-
 +
| <math>m_n</math> || <math>m_{n-1}</math> || --- || <math>m_1</math> || <math>b</math>
 +
|-
 +
| <math>se_n</math> || <math>se_{n-1}</math> || --- || <math>se_1</math> || <math>se_b</math>
 +
|-
 +
| <math>r_2</math> || <math>se_y</math> ||  || ||
 +
|-
 +
| <math>F</math> || <math>d_f</math> ||  ||  || 
 +
|-
 +
| <math>ss_{reg}</math> || <math>ss_{resld}</math> || ||  || 
 +
|}
 +
 
 +
*<math>m_n</math> is an array of constant base values for curve equation
 +
*<math>b</math> is the constant value of Y when X=0
 +
*<math>se_1</math> is the standard error value for m1
 +
*<math>se_b</math> is the standard error value for constant b
 +
*<math>r_2</math> is the coefficient of determination
 +
*<math>se_y</math> is the standard error value for Y estimate
 +
*<math>F</math> is the observed F value
 +
*<math>d_f</math> is the number of degrees of freedom
 +
*<math>ss_{reg}</math> is the regression sum of squares
 +
*<math>ss_{resld}</math> is the residual sum of squares
 +
 
 +
== Examples ==
 +
 
 +
<div id="2SpaceContent" class="zcontent" align="left">
  
</div>
+
{| id="TABLE3" class="SpreadSheet blue"
----
+
|- class="even"
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
| class="sshl_f" | '''X1 values'''
 +
| class="sshl_f" | '''X2 values'''
 +
| class="sshl_f" | '''Y values'''
 +
| class="sshl_f" |
  
LOGEST
+
|- class="odd"
 +
| class="sshl_f" | 1
 +
| class="sshl_f" | 15
 +
| class="sshl_f" | 5
 +
| class="sshl_f" |
  
</div></div>
+
|- class="even"
----
+
| class="sshl_f" | 2
<div id="8SpaceContent" class="zcontent" align="left">
+
| class="sshl_f" | 17
 +
| class="sshl_f" | 9
 +
| class="sshl_f" |
  
<font face="Tahoma, sans-serif"><font size="1">Lets see an example,</font></font>
+
|- class="odd"
 +
| class="sshl_f" | 3
 +
| class="sshl_f" | 23
 +
| class="sshl_f" | 11
 +
| class="sshl_f" |
  
<font face="Tahoma">LOGEST(Y,X,C,Stats)</font>
+
|- class="even"
 +
| class="sshl_f" | 4
 +
| class="sshl_f" | 28
 +
| class="sshl_f" | 16
 +
| class="sshl_f" |
  
<font face="Tahoma">'''B                C'''</font>
+
|- class="odd"
 +
| class="sshl_f" | 5
 +
| class="sshl_f" | 30
 +
| class="sshl_f" | 20
 +
| class="sshl_f" |
 +
|}
  
<font face="Tahoma">11             32000</font>
+
'''Example 1''': With single range of X values -
  
<font face="Tahoma">12             47300</font>
+
=LOGEST(C2:C6,A2:A6,TRUE,TRUE)  : Displays all the regression statistics for curve <br />with Y values in cells C2 to C6 and X values in cells A2 to A6.
  
<font face="Tahoma">13             70000</font>
+
<div id="5SpaceContent" class="zcontent" align="left">
  
<font face="Tahoma">14            105000</font>
+
{| class="SpreadSheet blue"
 +
|- class="even"
 +
| 1.3976542375431584
 +
| 4.015612511401349
 +
|- class="odd"
 +
| 0.035964826100314505
 +
| 0.11928183382512401
 +
|- class="even"
 +
| 0.9665390759484563
 +
| 0.11373076612886521
 +
|- class="odd"
 +
| 86.65681866342828
 +
| 3
 +
|- class="even"
 +
| 1.1208788400613339
 +
| 0.038804061492775904
  
<font face="Tahoma">15            120000</font>
+
|}
  
<font face="Tahoma">16            230000</font>
 
  
<font face="Tahoma"></font>
+
'''Example 2''': With multiple range of X values -
  
LOGEST(C2:C7,B2;B7,TRUE,FALSE) is</div>
+
=LOGEST(C2:C6,A2:B6,TRUE,TRUE) : Displays all the regression statistics for curve <br />with Y values in cells C2 to C6 and X values in  cells A2 to B6.
----
+
<div id="5SpaceContent" class="zcontent" align="left">
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE3" class="SpreadSheet blue"
+
{| class="SpreadSheet blue"
|- class="even"
 
| class="    " |
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f  " | 11
 
| class="sshl_f " | 32000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|- class="even"
 
|- class="even"
| class="  " | Row2
+
| 0.9684996526566505
| class="sshl_f" | 12
+
| 1.593646236498643
| class="sshl_f" | 47300
 
| class="SelectTD" |
 
| class="sshl_f" |
 
 
|- class="odd"
 
|- class="odd"
| Row3
+
| 0.05737674420683413
| class="sshl_f" | 13
+
| 0.23878654115432985
| class="sshl_f" | 70000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|- class="even"
 
|- class="even"
| Row4
+
| 0.9710443899207976
| class="sshl_f" | 14
+
| 0.12957493182116453
| class="sshl_f" | 105000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|- class="odd"
 
|- class="odd"
| class=" " | Row5
+
| 33.53562184546261
| class="sshl_f" | 15
+
| 2
| class="sshl_f" | 120000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|- class="even"
 
|- class="even"
| Row6
+
| 1.1261035756411908
| class=" " | 16
+
| 0.03357932591291887
| class=" " | 230000
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|fp5yFpzAJ7g|280|center|LOGEST}}
 +
 +
== See Also ==
 +
 +
*[[Manuals/calci/LINEST| LINEST]]
 +
 +
== References ==
 +
*[http://en.wikipedia.org/wiki/Curve Curve]
 +
*[http://en.wikipedia.org/wiki/Curve_fitting Curve Fitting]
 +
*[http://en.wikipedia.org/wiki/Linear_equation Linear Equation]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 16:19, 22 August 2018

LOGEST (YRange,XRange,Constant,Stats)


where,

  • is a set of Y values,
  • is an optional set of X values,
  • is a logical value TRUE or FALSE, that decides whether to force the constant 'b' to 1,
  • is a logical value TRUE or FALSE, that decides whether to return additional regression statistics.
    • LOGEST() is an array function that calculates the exponential curve that fits the data values and returns an array of values that describes the curve.

Description

  • If 'YRange' is the set of dependent variable, 'XRange' is the set of independent variable, 'm' is a constant base for X value and 'b' is constant (Y-intercept),

then equation for curve is -


  • For multiple ranges of X-values,

  • Argument values and should be numeric, else Calci displays NaN error message.
  • The length of array of XRange values should be equal to length of array of YRange values, else Calci displays #NULL error message.
  • is a logical value that decides whether to make constant 'b' equal to 1.
  • If = TRUE or omitted, 'b' is calculated normally. If = FALSE, 'b' is made equal to 1.
  • is a logical value that decides whether to display additional regression statistics.
  • If = TRUE, calci returns additional regresstion statistics. If = FALSE or omitted, Calci returns the values of 'm coefficients' and the constant 'b'.
  • When there is only one independent X variable, Y intercept (b) can be calculated using following formulas -

  • The additional regression is displayed in the following format where each statistic value is described as below-
---
---
  • is an array of constant base values for curve equation
  • is the constant value of Y when X=0
  • is the standard error value for m1
  • is the standard error value for constant b
  • is the coefficient of determination
  • is the standard error value for Y estimate
  • is the observed F value
  • is the number of degrees of freedom
  • is the regression sum of squares
  • is the residual sum of squares

Examples

X1 values X2 values Y values
1 15 5
2 17 9
3 23 11
4 28 16
5 30 20

Example 1: With single range of X values -

=LOGEST(C2:C6,A2:A6,TRUE,TRUE)  : Displays all the regression statistics for curve 
with Y values in cells C2 to C6 and X values in cells A2 to A6.
1.3976542375431584 4.015612511401349
0.035964826100314505 0.11928183382512401
0.9665390759484563 0.11373076612886521
86.65681866342828 3
1.1208788400613339 0.038804061492775904


Example 2: With multiple range of X values -

=LOGEST(C2:C6,A2:B6,TRUE,TRUE) : Displays all the regression statistics for curve 
with Y values in cells C2 to C6 and X values in cells A2 to B6.
0.9684996526566505 1.593646236498643
0.05737674420683413 0.23878654115432985
0.9710443899207976 0.12957493182116453
33.53562184546261 2
1.1261035756411908 0.03357932591291887

Related Videos

LOGEST

See Also

References