Difference between revisions of "Manuals/calci/EXP"
Jump to navigation
Jump to search
(13 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
<div style="font-size:30px">'''EXP(x)'''</div><br/> | <div style="font-size:30px">'''EXP(x)'''</div><br/> | ||
*where <math>x</math> is the number . | *where <math>x</math> is the number . | ||
+ | |||
+ | *EXP() returns e raised to the power of a given number | ||
+ | |||
==Description== | ==Description== | ||
*This function gives the <math>e</math> raised to the power of number. | *This function gives the <math>e</math> raised to the power of number. | ||
− | *In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math> | + | *In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math> or <math>e^x</math>. |
*The approximate value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>. | *The approximate value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>. | ||
*It is called the Mathematical Constant or Euler's Number or Napier's Constant. | *It is called the Mathematical Constant or Euler's Number or Napier's Constant. | ||
*It is the base of natural logarithm. | *It is the base of natural logarithm. | ||
− | *It can calculate the sum of infinite series: <math>e=1+ | + | *It can be calculate the sum of infinite series: <math>e=1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4} +...</math> |
*And the inverse function of the natural logarithm function is the exponential function: | *And the inverse function of the natural logarithm function is the exponential function: | ||
<math>f^{-1}(x) = e^x</math>. | <math>f^{-1}(x) = e^x</math>. | ||
+ | |||
+ | ==ZOS== | ||
+ | *The syntax is to calculate the EXP in ZOS is <math>EXP(x)</math>. | ||
+ | **where <math>x</math> is the number . | ||
+ | *For e.g.,(-9)..5..2@EXP | ||
+ | {{#ev:youtube|k1aWYvtxxrI|280|center|Exponential}} | ||
==Examples== | ==Examples== | ||
− | * | + | *=EXP(1)=2.718281828459045 |
− | * | + | *=EXP(0)=1 |
− | * | + | *=EXP(-5)=0.0067379469990 |
− | * | + | *=EXP(6.3)=544.5719101259 |
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=T3zzvj6wSCQ|280|center|EXP Function}} | ||
==See Also== | ==See Also== | ||
− | |||
− | |||
+ | *[[Manuals/calci/IMEXP | IMEXP ]] | ||
+ | *[[Manuals/calci/LOG | LOG ]] | ||
+ | *[[Manuals/calci/LN | LN ]] | ||
==References== | ==References== | ||
− | [http://en.wikipedia.org/wiki/Exponential_function | + | [http://en.wikipedia.org/wiki/Exponential_function Exponential function] |
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 15:21, 19 November 2018
EXP(x)
- where is the number .
- EXP() returns e raised to the power of a given number
Description
- This function gives the raised to the power of number.
- In , where represents the exponent of or .
- The approximate value of the constant and it is equal to or .
- It is called the Mathematical Constant or Euler's Number or Napier's Constant.
- It is the base of natural logarithm.
- It can be calculate the sum of infinite series:
- And the inverse function of the natural logarithm function is the exponential function:
.
ZOS
- The syntax is to calculate the EXP in ZOS is .
- where is the number .
- For e.g.,(-9)..5..2@EXP
Examples
- =EXP(1)=2.718281828459045
- =EXP(0)=1
- =EXP(-5)=0.0067379469990
- =EXP(6.3)=544.5719101259
Related Videos
See Also
References