Difference between revisions of "Manuals/calci/EXP"
Jump to navigation
Jump to search
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<div style="font-size:30px">'''EXP(x)'''</div><br/> | <div style="font-size:30px">'''EXP(x)'''</div><br/> | ||
*where <math>x</math> is the number . | *where <math>x</math> is the number . | ||
+ | |||
+ | *EXP() returns e raised to the power of a given number | ||
==Description== | ==Description== | ||
Line 12: | Line 14: | ||
<math>f^{-1}(x) = e^x</math>. | <math>f^{-1}(x) = e^x</math>. | ||
− | ==ZOS | + | ==ZOS== |
*The syntax is to calculate the EXP in ZOS is <math>EXP(x)</math>. | *The syntax is to calculate the EXP in ZOS is <math>EXP(x)</math>. | ||
**where <math>x</math> is the number . | **where <math>x</math> is the number . | ||
− | *For e.g.,(-9)..5..2@ | + | *For e.g.,(-9)..5..2@EXP |
{{#ev:youtube|k1aWYvtxxrI|280|center|Exponential}} | {{#ev:youtube|k1aWYvtxxrI|280|center|Exponential}} | ||
Line 24: | Line 26: | ||
*=EXP(-5)=0.0067379469990 | *=EXP(-5)=0.0067379469990 | ||
*=EXP(6.3)=544.5719101259 | *=EXP(6.3)=544.5719101259 | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=T3zzvj6wSCQ|280|center|EXP Function}} | ||
==See Also== | ==See Also== | ||
Line 33: | Line 39: | ||
==References== | ==References== | ||
[http://en.wikipedia.org/wiki/Exponential_function Exponential function] | [http://en.wikipedia.org/wiki/Exponential_function Exponential function] | ||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 15:21, 19 November 2018
EXP(x)
- where is the number .
- EXP() returns e raised to the power of a given number
Description
- This function gives the raised to the power of number.
- In , where represents the exponent of or .
- The approximate value of the constant and it is equal to or .
- It is called the Mathematical Constant or Euler's Number or Napier's Constant.
- It is the base of natural logarithm.
- It can be calculate the sum of infinite series:
- And the inverse function of the natural logarithm function is the exponential function:
.
ZOS
- The syntax is to calculate the EXP in ZOS is .
- where is the number .
- For e.g.,(-9)..5..2@EXP
Examples
- =EXP(1)=2.718281828459045
- =EXP(0)=1
- =EXP(-5)=0.0067379469990
- =EXP(6.3)=544.5719101259
Related Videos
See Also
References