Difference between revisions of "Manuals/calci/QUATERNION"
Jump to navigation
Jump to search
(13 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
*Quartenion is a complex number of the form w + xi + yj + zk, where w, x, y, z are real numbers and i, j, k are imaginary units. | *Quartenion is a complex number of the form w + xi + yj + zk, where w, x, y, z are real numbers and i, j, k are imaginary units. | ||
*The imaginary units are satisfy certain conditions: | *The imaginary units are satisfy certain conditions: | ||
− | *<math>i^2=j^2=k^2=ijk= -1</math>. | + | * <math>i^{2}=j^2=k^2=ijk= -1</math>. |
− | *<math> | + | *<math>i\sdot j </math> =<math>k</math> = <math> -j \sdot i </math> |
+ | *<math>j\sdot k </math> =<math>i</math> =<math> -k\sdot j </math> | ||
+ | *<math>k\sdot i </math> =<math>j</math> = <math> -i\sdot k </math> | ||
+ | |||
+ | ==Examples== | ||
+ | #QUATERNION(9,2,3,4) = 9 2 3 4 | ||
+ | #QUATERNION(8,-2,4,-5) = 8 -2 4 -5 | ||
+ | #QUATERNION(-9,-12,-16,-20) = -9 -12 -16 -20 | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=ln3vI4JEArc|280|center|Quaternion}} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/QUARTILE | QUARTILE ]] | ||
+ | *[[Manuals/calci/TOQUARTER | TOQUARTER ]] | ||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | *[[ Z3 | Z3 home ]] | ||
+ | |||
+ | ==References== | ||
+ | [http://math.ucr.edu/~huerta/introquaternions.pdf Quartenion] | ||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 15:06, 30 November 2018
QUATERNION (a,b,c,d)
- and are any real numbers.
Description
- This function shows the coefficient of the Quarternion.
- In , and are any real numbers.
- Quartenion is a complex number of the form w + xi + yj + zk, where w, x, y, z are real numbers and i, j, k are imaginary units.
- The imaginary units are satisfy certain conditions:
- .
- = =
- = =
- = =
Examples
- QUATERNION(9,2,3,4) = 9 2 3 4
- QUATERNION(8,-2,4,-5) = 8 -2 4 -5
- QUATERNION(-9,-12,-16,-20) = -9 -12 -16 -20