Difference between revisions of "Manuals/calci/EXPOF"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "expof")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
expof
+
<div style="font-size:30px">'''EXPOF(x)'''</div><br/>
 +
*<math>x</math> is the number.
 +
 
 +
==Description==
 +
*This function gives the <math>e</math> raised to the power of number.
 +
*In <math>EXPOF(x)</math>, where <math>x</math> represents the exponent of <math>e</math> or <math>e^x</math>.
 +
*The approximate  value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>.
 +
*It is called the Mathematical Constant or Euler's Number or Napier's Constant.
 +
*It is the base of natural logarithm.
 +
*It can be calculate the sum of infinite series: <math>e=1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4} +...</math>
 +
*And the inverse function of the natural logarithm function is the exponential function:
 +
<math>f^{-1}(x) = e^x</math>.
 +
 
 +
==Examples==
 +
#EXPOF(3) = 2.718281828459045 7.38905609893065 20.085536923187668
 +
#EXPOF(5.2) = 2.718281828459045 7.3890560989306495 20.085536923187664 54.59815003314423 148.41315910257657
 +
#EXPOF(7/3) = 2.718281828459045 7.3890560989306495
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|v=T3zzvj6wSCQ|280|center|EXP Function}}
 +
 
 +
==See Also==
 +
 
 +
*[[Manuals/calci/IMEXP  | IMEXP ]]
 +
*[[Manuals/calci/LOG  | LOG ]]
 +
*[[Manuals/calci/LN  | LN ]]
 +
 
 +
==References==
 +
[http://en.wikipedia.org/wiki/Exponential_function  Exponential function]
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 14:57, 11 January 2019

EXPOF(x)


  • is the number.

Description

  • This function gives the raised to the power of number.
  • In , where represents the exponent of or .
  • The approximate value of the constant and it is equal to or .
  • It is called the Mathematical Constant or Euler's Number or Napier's Constant.
  • It is the base of natural logarithm.
  • It can be calculate the sum of infinite series:
  • And the inverse function of the natural logarithm function is the exponential function:

.

Examples

  1. EXPOF(3) = 2.718281828459045 7.38905609893065 20.085536923187668
  2. EXPOF(5.2) = 2.718281828459045 7.3890560989306495 20.085536923187664 54.59815003314423 148.41315910257657
  3. EXPOF(7/3) = 2.718281828459045 7.3890560989306495

Related Videos

EXP Function

See Also

References

Exponential function