Difference between revisions of "Manuals/calci/HADAMARD"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''HADAMARD'''</div><br/>")
 
 
(13 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''HADAMARD'''</div><br/>
+
<div style="font-size:25px">'''MATRIX (TypeOfMatrix,DimensionsOfMatrix,SeedValuesToUse,IJFunction,PreParameter,IsItInternalCall)'''</div><br/>
 +
*<math>TypeOfMatrix</math> is the type of the matrix.
 +
*<math> DimensionsOfMatrix </math>  is the order of the Hadamard matrix.
 +
 
 +
==Description==
 +
*This function gives the matrix satisfying the property of Hadamard.
 +
*A Hadamard matrix is the square matrix with the entries of 1 and -1.
 +
*Also the rows of that matrix are orthogonal.
 +
*So H be a Hadamard matrix of order 2n.
 +
*The transpose of H is closely related to its inverse.
 +
*The equivalent definition for hadamard matrix is:
 +
<math>H H^{T} = n I_{n}</math> 
 +
where <math>I_{n}</math> is the n × n identity matrix and <math>H^T</math> is the transpose of H.
 +
*So the possible order of the matrix is 1,2 or positive multiple of 4.
 +
*The few examples of hadamard matrices are:
 +
*<math>H_1=\begin{bmatrix}
 +
1 \\
 +
\end{bmatrix}</math>
 +
*<math>H_2 = \begin{bmatrix}
 +
1  & 1 \\
 +
1  & -1 \\
 +
\end{bmatrix}</math>
 +
*<math>H_3 =\begin{bmatrix}
 +
1  & 1 & 1 & 1 \\
 +
1  & -1 & 1 & -1\\
 +
1 & 1 & -1 & -1 \\
 +
1 & -1 & -1 & 1\\
 +
\end{bmatrix}</math>
 +
 
 +
==Examples==
 +
*1.MATRIX("hadamard") = 1
 +
*2.MATRIX("hadamard",3)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1
 +
|-
 +
| 1 || -1 || 1 || -1
 +
|-
 +
| 1 || 1 || -1 || -1
 +
|-
 +
|1 || -1 ||-1 || 1
 +
|}
 +
*3.MATRIX("hadamard",4)
 +
{| class="wikitable"
 +
|-
 +
| 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1
 +
|-
 +
| 1 || -1 || 1 || -1 ||1 ||-1 ||1 ||-1
 +
|-
 +
| 1 || 1 || -1 || -1 || 1 || 1 || -1 ||-1
 +
|-
 +
|1 || -1 ||-1 || 1 || 1 || -1 || -1 || 1
 +
|-
 +
| 1 || 1 || 1 || 1 || -1 ||-1 ||-1 ||-1
 +
|-
 +
| 1 || -1 || 1 ||-1 ||-1 || 1 || -1 ||1
 +
|-
 +
| 1 || 1 || -1 || -1 || -1 || -1 || 1 || 1
 +
|-
 +
| 1 || -1 || -1 || 1 || -1 ||1 || 1 ||-1
 +
|}
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|v=BM6TUF5dp9c|280|center|Hadamard Matrix}}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]]
 +
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 +
*[[Manuals/calci/CIRCULANT| CIRCULANT]]
 +
*[[Manuals/calci/HANKEL| HANKEL]]
 +
 
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Hadamard_matrix Hadamard matrix]
 +
 
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 12:46, 9 April 2019

MATRIX (TypeOfMatrix,DimensionsOfMatrix,SeedValuesToUse,IJFunction,PreParameter,IsItInternalCall)


  • is the type of the matrix.
  • is the order of the Hadamard matrix.

Description

  • This function gives the matrix satisfying the property of Hadamard.
  • A Hadamard matrix is the square matrix with the entries of 1 and -1.
  • Also the rows of that matrix are orthogonal.
  • So H be a Hadamard matrix of order 2n.
  • The transpose of H is closely related to its inverse.
  • The equivalent definition for hadamard matrix is:
  

where is the n × n identity matrix and is the transpose of H.

  • So the possible order of the matrix is 1,2 or positive multiple of 4.
  • The few examples of hadamard matrices are:

Examples

  • 1.MATRIX("hadamard") = 1
  • 2.MATRIX("hadamard",3)
1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1
  • 3.MATRIX("hadamard",4)
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

Related Videos

Hadamard Matrix

See Also

References