Difference between revisions of "Manuals/calci/HADAMARD"
Jump to navigation
Jump to search
(12 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size: | + | <div style="font-size:25px">'''MATRIX (TypeOfMatrix,DimensionsOfMatrix,SeedValuesToUse,IJFunction,PreParameter,IsItInternalCall)'''</div><br/> |
− | *<math> | + | *<math>TypeOfMatrix</math> is the type of the matrix. |
+ | *<math> DimensionsOfMatrix </math> is the order of the Hadamard matrix. | ||
==Description== | ==Description== | ||
*This function gives the matrix satisfying the property of Hadamard. | *This function gives the matrix satisfying the property of Hadamard. | ||
*A Hadamard matrix is the square matrix with the entries of 1 and -1. | *A Hadamard matrix is the square matrix with the entries of 1 and -1. | ||
− | *Also the rows of that matrix are orthogonal. | + | *Also the rows of that matrix are orthogonal. |
+ | *So H be a Hadamard matrix of order 2n. | ||
*The transpose of H is closely related to its inverse. | *The transpose of H is closely related to its inverse. | ||
*The equivalent definition for hadamard matrix is: | *The equivalent definition for hadamard matrix is: | ||
Line 11: | Line 13: | ||
where <math>I_{n}</math> is the n × n identity matrix and <math>H^T</math> is the transpose of H. | where <math>I_{n}</math> is the n × n identity matrix and <math>H^T</math> is the transpose of H. | ||
*So the possible order of the matrix is 1,2 or positive multiple of 4. | *So the possible order of the matrix is 1,2 or positive multiple of 4. | ||
− | *The examples of hadamard matrices are: | + | *The few examples of hadamard matrices are: |
+ | *<math>H_1=\begin{bmatrix} | ||
+ | 1 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | *<math>H_2 = \begin{bmatrix} | ||
+ | 1 & 1 \\ | ||
+ | 1 & -1 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | *<math>H_3 =\begin{bmatrix} | ||
+ | 1 & 1 & 1 & 1 \\ | ||
+ | 1 & -1 & 1 & -1\\ | ||
+ | 1 & 1 & -1 & -1 \\ | ||
+ | 1 & -1 & -1 & 1\\ | ||
+ | \end{bmatrix}</math> | ||
+ | |||
+ | ==Examples== | ||
+ | *1.MATRIX("hadamard") = 1 | ||
+ | *2.MATRIX("hadamard",3) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || -1 || 1 || -1 | ||
+ | |- | ||
+ | | 1 || 1 || -1 || -1 | ||
+ | |- | ||
+ | |1 || -1 ||-1 || 1 | ||
+ | |} | ||
+ | *3.MATRIX("hadamard",4) | ||
+ | {| class="wikitable" | ||
+ | |- | ||
+ | | 1 || 1 || 1 || 1 || 1 || 1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || -1 || 1 || -1 ||1 ||-1 ||1 ||-1 | ||
+ | |- | ||
+ | | 1 || 1 || -1 || -1 || 1 || 1 || -1 ||-1 | ||
+ | |- | ||
+ | |1 || -1 ||-1 || 1 || 1 || -1 || -1 || 1 | ||
+ | |- | ||
+ | | 1 || 1 || 1 || 1 || -1 ||-1 ||-1 ||-1 | ||
+ | |- | ||
+ | | 1 || -1 || 1 ||-1 ||-1 || 1 || -1 ||1 | ||
+ | |- | ||
+ | | 1 || 1 || -1 || -1 || -1 || -1 || 1 || 1 | ||
+ | |- | ||
+ | | 1 || -1 || -1 || 1 || -1 ||1 || 1 ||-1 | ||
+ | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=BM6TUF5dp9c|280|center|Hadamard Matrix}} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/ANTIDIAGONAL| ANTIDIAGONAL]] | ||
+ | *[[Manuals/calci/CONFERENCE| CONFERENCE]] | ||
+ | *[[Manuals/calci/CIRCULANT| CIRCULANT]] | ||
+ | *[[Manuals/calci/HANKEL| HANKEL]] | ||
+ | |||
+ | ==References== | ||
+ | *[http://en.wikipedia.org/wiki/Hadamard_matrix Hadamard matrix] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 12:46, 9 April 2019
MATRIX (TypeOfMatrix,DimensionsOfMatrix,SeedValuesToUse,IJFunction,PreParameter,IsItInternalCall)
- is the type of the matrix.
- is the order of the Hadamard matrix.
Description
- This function gives the matrix satisfying the property of Hadamard.
- A Hadamard matrix is the square matrix with the entries of 1 and -1.
- Also the rows of that matrix are orthogonal.
- So H be a Hadamard matrix of order 2n.
- The transpose of H is closely related to its inverse.
- The equivalent definition for hadamard matrix is:
where is the n × n identity matrix and is the transpose of H.
- So the possible order of the matrix is 1,2 or positive multiple of 4.
- The few examples of hadamard matrices are:
Examples
- 1.MATRIX("hadamard") = 1
- 2.MATRIX("hadamard",3)
1 | 1 | 1 | 1 |
1 | -1 | 1 | -1 |
1 | 1 | -1 | -1 |
1 | -1 | -1 | 1 |
- 3.MATRIX("hadamard",4)
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 |
1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 |
1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 |
1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 |
1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 |
1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 |
1 | -1 | -1 | 1 | -1 | 1 | 1 | -1 |
Related Videos
See Also
References