Difference between revisions of "Manuals/calci/SKEWSYMMETRIC"

From ZCubes Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by 2 users not shown)
Line 7: Line 7:
 
*A Skew Symmetric is a square matrix which satisfies the following identity <math>A=A^T</math>,where <math>A^T</math> is the matrix transpose.  
 
*A Skew Symmetric is a square matrix which satisfies the following identity <math>A=A^T</math>,where <math>A^T</math> is the matrix transpose.  
 
*If the entry in the <math>i^{th}</math> row and <math>j^{th}</math> column is <math>a_{ij}</math>.
 
*If the entry in the <math>i^{th}</math> row and <math>j^{th}</math> column is <math>a_{ij}</math>.
*i.e.<math>A = (a_{ij})</math> then the skew symmetric condition is <math>(a_{ij}) = (a_{ij})</math>.  
+
*i.e.<math>A = (a_{ij})</math> then the skew symmetric condition is <math>(a_{ij})</math> = <math>-(a_{ij})</math>.
 
*So its diagonal values are "0".
 
*So its diagonal values are "0".
  
 
==Examples==
 
==Examples==
#SKEWSYMMETRIC(4)
+
1.
 +
SKEWSYMMETRIC(4)
 
{| class="wikitable"
 
{| class="wikitable"
 
|-
 
|-
Line 22: Line 23:
 
|(-25) || -72 || -43 || 0
 
|(-25) || -72 || -43 || 0
 
|}
 
|}
 +
2.
 +
SKEWSYMMETRIC(9)
 +
{| class="wikitable"
 +
|-
 +
| 0 || 48|| -36 || 72 || 25 ||51 ||-13 || -98 || 70
 +
|-
 +
|(-48) || 0 || -97|| -33 || 78 || -30 || -56 || 62 || 45
 +
|-
 +
|36|| 97 || 0 ||42 || -47 || 58 || 94 || 24 || -43
 +
|-
 +
|(-72) || 33 || -42 || 0 || -23 || -77 || -80 || 69 || 70
 +
|-
 +
| (-25) || -78 || 47 || 23 || 0 || -17 || 17 || -100 || 34
 +
|-
 +
| (-51) || 30 || -58 || 77 || 17 || 0 || -43 || -67 || 0
 +
|-
 +
|13 || 56 || -94 || 80 || -17 || 43 || 0 || -24 || 55
 +
|-
 +
| 98 || -62 || -24 || -69 || 100 || 67 || 24 || 0 || 76
 +
|-
 +
| (-70) || -45 || 43 || -70 || -34 || 0 || -55 || -76 || 0
 +
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=uKPmyG18N7I|280|center|Skew Symmetric}}
 +
 +
 +
==See Also==
 +
*[[Manuals/calci/KURT| KURT]]
 +
*[[Manuals/calci/STDEV  | STDEV ]]
 +
*[[Manuals/calci/STDEVP | STDEVP ]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Skewness Skewness]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 12:01, 25 April 2019

SKEWSYMMETRIC(Order)


  • is the order of the skew symmetric matrix.

Description

  • This function shows the Skew Symmetric matrix with the given order.
  • Skew Symmetric is also called Anti Symmetric or Antimetric.
  • A Skew Symmetric is a square matrix which satisfies the following identity ,where is the matrix transpose.
  • If the entry in the row and column is .
  • i.e. then the skew symmetric condition is = .
  • So its diagonal values are "0".

Examples

1. SKEWSYMMETRIC(4)

0 -39 2 25
39 0 15 72
(-2) -15 0 43
(-25) -72 -43 0

2. SKEWSYMMETRIC(9)

0 48 -36 72 25 51 -13 -98 70
(-48) 0 -97 -33 78 -30 -56 62 45
36 97 0 42 -47 58 94 24 -43
(-72) 33 -42 0 -23 -77 -80 69 70
(-25) -78 47 23 0 -17 17 -100 34
(-51) 30 -58 77 17 0 -43 -67 0
13 56 -94 80 -17 43 0 -24 55
98 -62 -24 -69 100 67 24 0 76
(-70) -45 43 -70 -34 0 -55 -76 0

Related Videos

Skew Symmetric


See Also

References