Difference between revisions of "Manuals/calci/ANTILOG"
Jump to navigation
Jump to search
(Created page with "<div style="font-size:30px">'''ANGLE (deg,by,till)'''</div><br/> *<math>deg</math> is the starting angle value in degree *<math> by </math> is the skip value. *<math> till </m...") |
|||
(5 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">''' | + | <div style="font-size:30px">'''ANTILOG (Number,Base)'''</div><br/> |
− | *<math> | + | *<math>Number</math> is the log value to find the Antilog value |
− | *<math> | + | *<math> Base </math> base value of the Log value. |
− | * | + | |
+ | ==Description== | ||
+ | *This function shows the antilog of a given number. | ||
+ | *Antilog is the number whose logarithm is a given number. | ||
+ | *For example, the logarithm of 1,000 (10 3) is 3, so the antilogarithm of 3 is 1,000. | ||
+ | *In algebraic notation, if log x = y, then antilog y = x. | ||
+ | *Here ANTILOG(Number, Base) indicates we can find the anti logarithmic value with any base. | ||
+ | |||
+ | ==Examples== | ||
+ | #ANTILOG(3.3219280948873626,2) = 10.000000000000002 =10(Approximate) | ||
+ | #ANTILOG(3.23621726987935,3) = 35.000000000000014 = 35(Approximate) | ||
+ | #ANTILOG(2.397940008672037,10) = 249.9999999999997 = 250 (Approximate) | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=vZ709qOc8x8|280|center|Inverse Log}} | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/LOG| LOG]] | ||
+ | *[[Manuals/calci/LOG10| LOG10]] | ||
+ | *[[Manuals/calci/LN| LN]] | ||
+ | |||
+ | ==References== | ||
+ | *[http://www.rapidtables.com/calc/math/anti-log-calculator.htm AntiLog] | ||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 00:28, 1 July 2019
ANTILOG (Number,Base)
- is the log value to find the Antilog value
- base value of the Log value.
Description
- This function shows the antilog of a given number.
- Antilog is the number whose logarithm is a given number.
- For example, the logarithm of 1,000 (10 3) is 3, so the antilogarithm of 3 is 1,000.
- In algebraic notation, if log x = y, then antilog y = x.
- Here ANTILOG(Number, Base) indicates we can find the anti logarithmic value with any base.
Examples
- ANTILOG(3.3219280948873626,2) = 10.000000000000002 =10(Approximate)
- ANTILOG(3.23621726987935,3) = 35.000000000000014 = 35(Approximate)
- ANTILOG(2.397940008672037,10) = 249.9999999999997 = 250 (Approximate)