Difference between revisions of "Manuals/calci/PERMUTATIONS"
Jump to navigation
Jump to search
(8 intermediate revisions by 2 users not shown) | |||
Line 11: | Line 11: | ||
==Examples== | ==Examples== | ||
− | + | 1. PERMUTATIONS([3,4,5,6],3) | |
− | 3 4 5 | + | 3 4 5 |
− | 3 4 6 | + | 3 4 6 |
− | 3 5 4 | + | 3 5 4 |
− | 3 5 6 | + | 3 5 6 |
− | 3 6 4 | + | 3 6 4 |
− | 3 | + | 3 6 5 |
− | 6 | + | 4 3 5 |
− | 5 | + | 4 3 6 |
− | 4 | + | 4 5 3 |
− | 3 | + | 4 5 6 |
− | 5 | + | 4 6 3 |
− | 4 | + | 4 6 5 |
− | 3 | + | 5 3 4 |
− | 6 | + | 5 3 6 |
− | 4 | + | 5 4 3 |
− | 5 | + | 5 4 6 |
− | 3 | + | 5 6 3 |
− | 4 | + | 5 6 4 |
− | 5 | + | 6 3 4 |
− | 6 | + | 6 3 5 |
− | 4 | + | 6 4 3 |
− | 6 | + | 6 4 5 |
− | 3 | + | 6 5 3 |
− | 4 | + | 6 5 4 |
− | 6 | + | |
− | 5 | + | ==Related Videos== |
− | 5 | + | |
− | 3 | + | {{#ev:youtube|v=DROZVHObeko|280|center|Permutations}} |
− | 4 | + | |
− | 5 | + | |
− | 3 | + | ==See Also== |
− | 6 | + | *[[Manuals/calci/PERMUT | PERMUT]] |
− | 5 | + | *[[Manuals/calci/COMBIN | COMBIN ]] |
− | 4 | + | |
− | 3 | + | ==References== |
− | 5 | + | *[https://en.wikipedia.org/wiki/Permutation Permutation] |
− | 4 | + | |
− | 6 | + | |
− | 5 | + | |
− | 6 | + | *[[Z_API_Functions | List of Main Z Functions]] |
− | 3 | + | |
− | 5 | + | *[[ Z3 | Z3 home ]] |
− | 6 | ||
− | 4 | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 23:59, 15 April 2020
PERMUTATIONS (List,Of,MaxCount,IsAsString)
- are set of real numbers.
- maximum number of counts.
Description
- This function returns the Permutation list of the given number.
- A permutation, also called an "arrangement number" or "order," is a rearrangement of the elements of an ordered in a list.
- In PERMUTATIONS(List,Of,MaxCount,IsAsString),List is the set of numbers to find the Permutation.
- Maxcount is the maximum number of counts to find the Permutation.
- A formula for the number of possible permutations of k objects from a set of n.
Examples
1. PERMUTATIONS([3,4,5,6],3)
3 4 5 3 4 6 3 5 4 3 5 6 3 6 4 3 6 5 4 3 5 4 3 6 4 5 3 4 5 6 4 6 3 4 6 5 5 3 4 5 3 6 5 4 3 5 4 6 5 6 3 5 6 4 6 3 4 6 3 5 6 4 3 6 4 5 6 5 3 6 5 4
Related Videos
See Also
References