Difference between revisions of "Manuals/calci/DET"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "==DET==")
 
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
==DET==
+
<div style="font-size:30px">'''DET(array)'''</div><br/>
 +
*<math>array</math> is the set of numbers.
 +
 
 +
==Description==
 +
*This function gives the determinant value of a matrix.
 +
*To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
 +
*Determinant of the identity matrix is always 1.
 +
*Determinant of the matrix <math>A</math> is denoted by <math>det(A)</math> or <math>|A|</math>.
 +
*Let <math>A</math> be 2x2 matrix with the elements
 +
<math>A = \begin{bmatrix}
 +
a & b \\
 +
c & d \\
 +
\end{bmatrix}
 +
</math>
 +
*Then <math>det(A)=ad-bc</math>, where <math>a,b,c,d</math> all are real numbers.
 +
*Let <math>A</math> be the 3x3 matrix with the elements
 +
<math>A = \begin{bmatrix}
 +
a & b & c  \\
 +
d & e & f  \\
 +
g & h & i  \\
 +
\end{bmatrix}
 +
</math>
 +
Then <math>|A|=a\begin{vmatrix}
 +
e & f \\
 +
h & i
 +
\end{vmatrix} -b\begin{vmatrix}
 +
d & f \\
 +
g & i
 +
\end{vmatrix} +c\begin{vmatrix}
 +
d & e \\
 +
g & h
 +
\end{vmatrix}</math>:
 +
<math>|A| =a(ei-fh)-b(di-fg)+c(dh-eg)</math>
 +
*Let <math>A</math> be a square matrix of order <math>n</math>. Write <math>A = (a_{ij})</math>,
 +
*Where <math>a_{ij}</math> is the entry on the <math>i^{th}</math> row and <math>j^{th}</math> column and <math>i=1</math> to <math>n</math> & <math>j=1</math> to <math>n</math>.
 +
*For any <math>i</math> and <math>j</math>, set <math>A_{ij}</math> (called the co-factors), then the general formula for determinant of the matrix <math>A</math> is,
 +
<math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>.
 +
Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>.
 +
*This function will give the result as error when
 +
1. Any one of the element in array is empty or contain non-numeric
 +
2. Number of rows is not equal to number of columns
 +
 
 +
 
 +
==Examples==
 +
#=DET([[6,4,8],[3,6,1],[2,4,5]]) = 104
 +
#=DET([[-5,10],[6,-8]]) = -20
 +
#=DET([[1,0,2,1],[4,0,2,-1],[1,4,5,2],[3,1,2,0]]) = 17
 +
#=DET([1,2,3],[5,2,8]) = NAN
 +
 
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|v=H9BWRYJNIv4|280|center|Determinants}}
 +
 
 +
 
 +
==See Also==
 +
*[[Manuals/calci/MINVERSE  | MINVERSE ]]
 +
*[[Manuals/calci/MMULT  | MMULT ]]
 +
 
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Determinant Determinant ]
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 04:43, 26 May 2020

DET(array)


  • is the set of numbers.

Description

  • This function gives the determinant value of a matrix.
  • To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
  • Determinant of the identity matrix is always 1.
  • Determinant of the matrix is denoted by or .
  • Let be 2x2 matrix with the elements

  • Then , where all are real numbers.
  • Let be the 3x3 matrix with the elements

Then :

  • Let be a square matrix of order . Write ,
  • Where is the entry on the row and column and to & to .
  • For any and , set (called the co-factors), then the general formula for determinant of the matrix is,

, for any fixed . Also, for any fixed .

  • This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric
2. Number of rows is not equal to number of columns


Examples

  1. =DET([[6,4,8],[3,6,1],[2,4,5]]) = 104
  2. =DET([[-5,10],[6,-8]]) = -20
  3. =DET([[1,0,2,1],[4,0,2,-1],[1,4,5,2],[3,1,2,0]]) = 17
  4. =DET([1,2,3],[5,2,8]) = NAN


Related Videos

Determinants


See Also

References