Difference between revisions of "Manuals/calci/CHIDIST"

From ZCubes Wiki
Jump to navigation Jump to search
 
(36 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''CHIDIST(x,df)'''</div><br/>
+
<div style="font-size:30px">'''CHIDIST (Number,DegreeOfFreedom)'''</div><br/>
  
*'X' is the value for which distribution is evaluated and df is the number of degrees of freedem.
+
*<math>Number</math> is the value for which distribution is evaluated.
 +
*<math>Degreeoffreedom</math> is the number of degrees of freedom.
 +
**CHIDIST(), returns the one-tailed probability of the chi-squared distribution.
  
 
==Description==
 
==Description==
 
*This function gives the one_tailed probability of the chi-squared distribution.  
 
*This function gives the one_tailed probability of the chi-squared distribution.  
*It is denoted by  X^2 distribution.Normally categorical datas may displayed in tables.  
+
*It is denoted by  <math>\chi^2</math> distribution.  
*The X^2 static used to compare the observed value in each table to the value  
+
*Normally categorical data's may displayed in tables.
*which would be the expected under the assumption. The conditions of X^2 test is  
+
*The <math>\chi^2</math> static used to compare the observed value in each table to the assumed value.
 +
*The conditions of <math>\chi^2</math> test is
 +
#The table should be 2x2 or more than 2x2
 +
#Each observations should not be dependent
 +
#All expected values should be 10 or greater.
 +
*The test statistic is:
 +
<math>\chi^2=\sum\frac{(Oi-Ei)^2}{Ei}</math>
 +
The degrees of freedom is: (r–1)(c–1)
 +
*r = No. of rows
 +
*c = No. of columns
 +
Where:
 +
*Oi-the observed value in the ith cell
 +
*Ei- the expected value in the ith cell
  
1.The table should be 2x2 or more than 2x2
 
2.Each observations should not be dependent
 
3.All expected values should be 10 or greater. 
 
The test statistic is:
 
X^2=summation(Oi-Ei)^2/Ei
 
The degrees of freedom are: (r–1)(c–1)
 
r =No. of rows and c = No. of columns
 
Where:
 
Oi-the observed value in the ith cell
 
Ei- the expected value in the ith cell
 
 
Also this function will the result as Error when
 
Also this function will the result as Error when
1.The x&df values are nonnumeric
+
#The <math>Number</math> & <math>Degreeoffreedom</math> values are non-numeric
2.The x value is negative or df value is not an integer
+
#The <math>Number</math> value is negative or <math>Degreeoffreedom</math> value is not an integer
3. The df <1or df>10^10
+
#The <math>Degreeoffreedom < 1</math> or <math>Degreeoffreedom > 10^{10}</math>
4.Here  CHIDIST=P(X>x),where X is a X^2 random variable.  
+
#Here  CHIDIST=P(X>x),where X is a <math>\chi^2</math> random variable.  
 +
 
 +
*CHIDIST(-2,1)=Error, because Number is negative.
 +
*CHIDIST(2,-1)=Error, because Degreeoffreedom<1
  
**<math>=COMPLEX(5,2)</math> gives <math>5+2i</math>
+
==ZOS==
**<math>=COMPLEX(5,2,"j")</math> gives <math>5+2j</math>
+
*The syntax is to calculate CHIDIST in ZOS is CHIDIST(Number,Degreeoffreedom).
 +
*<math>Number</math> is the value for which distribution is evaluated.
 +
*<math>Degreeoffreedom</math> is the number of degrees of freedom.
 +
*For e.g.,CHIDIST(10..12,5.1..7.1..0.6)
 +
{{#ev:youtube|44cEta1FnA4|280|center|Chi-squared Distribution}}
  
 
==Examples==
 
==Examples==
 
{| id="TABLE3" class="SpreadSheet blue"
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
|- class="even"
| CHIDIST(x,df)
+
| CHIDIST(Number,Degreeoffreedom)
 
! x
 
! x
 
! df
 
! df
Line 53: Line 64:
 
|- class="even"
 
|- class="even"
 
|CHIDIST(-2,1)
 
|CHIDIST(-2,1)
|2
+
| -2
 
|1
 
|1
|error
+
|#N/A (NUMBER > 0)
 
|- class="odd"
 
|- class="odd"
 
|CHIDIST(2,-1)
 
|CHIDIST(2,-1)
 
|2                                       
 
|2                                       
|1
+
| -1
|error
+
|null
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|dXB3cUGnaxQ|280|center|Chi-Square Distribution}}
  
 
==See Also==
 
==See Also==
 
 
*[[Manuals/calci/CHITEST | CHITEST]]
 
*[[Manuals/calci/CHITEST | CHITEST]]
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Complex_number| Complex Numbers]
+
[http://en.wikipedia.org/wiki/Chi-squared_distribution  CHI-SQUARE Distribution]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 08:50, 2 June 2020

CHIDIST (Number,DegreeOfFreedom)


  • is the value for which distribution is evaluated.
  • is the number of degrees of freedom.
    • CHIDIST(), returns the one-tailed probability of the chi-squared distribution.

Description

  • This function gives the one_tailed probability of the chi-squared distribution.
  • It is denoted by distribution.
  • Normally categorical data's may displayed in tables.
  • The static used to compare the observed value in each table to the assumed value.
  • The conditions of test is
  1. The table should be 2x2 or more than 2x2
  2. Each observations should not be dependent
  3. All expected values should be 10 or greater.
  • The test statistic is:

The degrees of freedom is: (r–1)(c–1)

  • r = No. of rows
  • c = No. of columns

Where:

  • Oi-the observed value in the ith cell
  • Ei- the expected value in the ith cell

Also this function will the result as Error when

  1. The & values are non-numeric
  2. The value is negative or value is not an integer
  3. The or
  4. Here CHIDIST=P(X>x),where X is a random variable.
  • CHIDIST(-2,1)=Error, because Number is negative.
  • CHIDIST(2,-1)=Error, because Degreeoffreedom<1

ZOS

  • The syntax is to calculate CHIDIST in ZOS is CHIDIST(Number,Degreeoffreedom).
  • is the value for which distribution is evaluated.
  • is the number of degrees of freedom.
  • For e.g.,CHIDIST(10..12,5.1..7.1..0.6)
Chi-squared Distribution

Examples

CHIDIST(Number,Degreeoffreedom) x df RESULT
CHIDIST(18,2) 18 2 0.0001234098
CHIDIST(15,1) 15 1 0.0001075112
CHIDIST(2,1) 2 1 0.157299207050
CHIDIST(-2,1) -2 1 #N/A (NUMBER > 0)
CHIDIST(2,-1) 2 -1 null

Related Videos

Chi-Square Distribution

See Also

References

CHI-SQUARE Distribution