Difference between revisions of "Manuals/calci/FDIST"

From ZCubes Wiki
Jump to navigation Jump to search
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''FDIST(x,df1,df2)'''</div><br/>
+
<div style="font-size:30px">'''FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2)'''</div><br/>
*<math>x</math> is the value of the function
+
*<math>Number</math> is the value of the function
*<math>df1</math> and <math>df1</math> is degrees of freedom.
+
*<math>DegreeOfFreedom1</math> and <math>DegreeOfFreedom2</math> are numbers of degrees of freedom.
 +
**FDIST(), returns the F probability distribution.
  
 
==Description==
 
==Description==
Line 7: Line 8:
 
*This distribution is continuous probability  distribution and it is called  Fisher-Snedecor distribution.
 
*This distribution is continuous probability  distribution and it is called  Fisher-Snedecor distribution.
 
*The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value.
 
*The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value.
*In  <math>FDIST(x,df1,df2), x </math>  is the value of the function ,<math>df1</math> is the numerator degrees of freedom and <math>df2</math> is the denominator degrees of freedom.  
+
*In  <math>FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2), Number </math>  is the value of the function ,<math>DegreeOfFreedom1</math> is the numerator degrees of freedom and <math>DegreeOfFreedom2</math> is the denominator degrees of freedom.  
 
*This distribution is the ratio of two chi-square distributions with degrees of freedom r1 and r2, respectively, where each chi-square has first been divided by its degrees of freedom.  
 
*This distribution is the ratio of two chi-square distributions with degrees of freedom r1 and r2, respectively, where each chi-square has first been divided by its degrees of freedom.  
 
*The Probability density function of the F distribution is:  
 
*The Probability density function of the F distribution is:  
Line 13: Line 14:
 
<math>0<x<\infty</math> where <math>\Gamma</math> is the Gamma Function.
 
<math>0<x<\infty</math> where <math>\Gamma</math> is the Gamma Function.
 
*The gamma function is defined by  <math>\Gamma(t) = \int\limits_{0}^{\infty} x^{t-1} e^{-x} dx</math>.   
 
*The gamma function is defined by  <math>\Gamma(t) = \int\limits_{0}^{\infty} x^{t-1} e^{-x} dx</math>.   
When the value of df1 and df2 are not integers ,then it is converted in to integers.
+
When the value of DegreeOfFreedom1 and DegreeOfFreedom2 are not integers ,then it is converted in to integers.
 
*This function will give the result as error when  
 
*This function will give the result as error when  
 
   1. any one of the argument is non-numeric.
 
   1. any one of the argument is non-numeric.
   2. <math>x</math> is negative
+
   2. Number is negative
   3. <math>df1</math> or <math>df2<1</math> and  <math>df1</math> or <math>df2\ge 10^{10}</math>
+
   3. If DegreeOfFreedom1<1  or DegreeOfFreedom2><math>10^{10}</math> and  DegreeOfFreedom2<1 or DegreeOfFreedom2> <math>10^{10}</math>
 +
 
 +
==ZOS==
 +
 
 +
*The syntax is to find FDIST in ZOS is <math>FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2)</math>.
 +
**<math>Number</math> is the value of the function.
 +
*For e.g.,FDIST(85.2,22,18)
 +
*FDIST(67..70,6,8)
  
 
==Examples==
 
==Examples==
#FDIST(20.6587,7,3)=0.01526530981
+
#=FDIST(20.6587,7,3) = 0.01526530981
#FDIST(70.120045,12.2,6.35)=0.000011229898
+
#=FDIST(70.120045,12.2,6.35) = 0.000011229898
#FDIST(10,1.3,1.5)=0.134947329626
+
#=FDIST(10,1.3,1.5) = 0.12923064798773362
#FDIST(-28,4,6)=NAN
+
#=FDIST(-28,4,6) = #N/A (NUMBER > 0)
  
 +
==Related Videos==
 +
{{#ev:youtube|7rGAh_XDvY8|280|center|F Distribution}}
  
 
==See Also==
 
==See Also==
 
*[[Manuals/calci/FINV  | FINV ]]  
 
*[[Manuals/calci/FINV  | FINV ]]  
*[[Manuals/calci/FTEST  | FTEST ]]  
+
*[[Manuals/calci/FTEST  | FTEST ]]
 +
 
 +
==References==
 +
[http://en.wikipedia.org/wiki/F-distribution F-Distribution]
  
  
  
==References==
+
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 09:10, 2 June 2020

FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2)


  • is the value of the function
  • and are numbers of degrees of freedom.
    • FDIST(), returns the F probability distribution.

Description

  • This function gives the value of F probability distribution.
  • This distribution is continuous probability distribution and it is called Fisher-Snedecor distribution.
  • The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value.
  • In is the value of the function , is the numerator degrees of freedom and is the denominator degrees of freedom.
  • This distribution is the ratio of two chi-square distributions with degrees of freedom r1 and r2, respectively, where each chi-square has first been divided by its degrees of freedom.
  • The Probability density function of the F distribution is:

where is the Gamma Function.

  • The gamma function is defined by .

When the value of DegreeOfFreedom1 and DegreeOfFreedom2 are not integers ,then it is converted in to integers.

  • This function will give the result as error when
 1. any one of the argument is non-numeric.
 2. Number is negative
 3. If DegreeOfFreedom1<1  or DegreeOfFreedom2> and  DegreeOfFreedom2<1 or DegreeOfFreedom2> 

ZOS

  • The syntax is to find FDIST in ZOS is .
    • is the value of the function.
  • For e.g.,FDIST(85.2,22,18)
  • FDIST(67..70,6,8)

Examples

  1. =FDIST(20.6587,7,3) = 0.01526530981
  2. =FDIST(70.120045,12.2,6.35) = 0.000011229898
  3. =FDIST(10,1.3,1.5) = 0.12923064798773362
  4. =FDIST(-28,4,6) = #N/A (NUMBER > 0)

Related Videos

F Distribution

See Also

References

F-Distribution