Difference between revisions of "Manuals/calci/FDIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FDIST'''('''x''', '''DF1''', '''DF2''') '''Where X'''   is the value at which to evaluate the function, '''DF...")
 
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2)'''</div><br/>
 +
*<math>Number</math> is the value of the function
 +
*<math>DegreeOfFreedom1</math> and <math>DegreeOfFreedom2</math> are numbers of degrees of freedom.
 +
**FDIST(), returns the F probability distribution.
  
'''FDIST'''('''x''', '''DF1''', '''DF2''')
+
==Description==
 +
*This function gives the value of F probability distribution.
 +
*This distribution is continuous probability  distribution and it is called  Fisher-Snedecor distribution.
 +
*The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value.
 +
*In  <math>FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2), Number </math>  is the value of the function ,<math>DegreeOfFreedom1</math> is the numerator degrees of freedom and <math>DegreeOfFreedom2</math> is the denominator degrees of freedom.
 +
*This distribution is the ratio of two chi-square distributions with degrees of freedom r1 and r2, respectively, where each chi-square has first been divided by its degrees of freedom.
 +
*The Probability density function of the F distribution is:
 +
<math>f(x,r_1,r_2)=\frac{\Gamma[\frac{r_1+r_2}{2}](\frac{r_1}{r_2})^{\tfrac{r_1}{2}}}{ \Gamma(\frac{r_1}{2})\Gamma(\frac{r_2}{2})}*\frac{(x)^{\tfrac{r_1}{2}-1}}{(\frac{1+r_1x}{r_2})^{\tfrac{r_1+r_2}{2}}}</math>
 +
<math>0<x<\infty</math> where <math>\Gamma</math> is the Gamma Function.
 +
*The gamma function is defined by  <math>\Gamma(t) = \int\limits_{0}^{\infty} x^{t-1} e^{-x} dx</math>. 
 +
When the value of DegreeOfFreedom1 and DegreeOfFreedom2 are not integers ,then it is converted in to integers.
 +
*This function will give the result as error when
 +
  1. any one of the argument is non-numeric.
 +
  2. Number is negative
 +
  3. If DegreeOfFreedom1<1  or DegreeOfFreedom2><math>10^{10}</math> and  DegreeOfFreedom2<1 or DegreeOfFreedom2> <math>10^{10}</math>
  
'''Where X'''   is the value at which to evaluate the function, '''DF1''' is the numerator degrees of freedom and '''DF2 '''is the denominator degrees of freedom.
+
==ZOS==
  
</div>
+
*The syntax is to find FDIST in ZOS is <math>FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2)</math>.
----
+
**<math>Number</math> is the value of the function.
<div id="1SpaceContent" class="zcontent" align="left">
+
*For e.g.,FDIST(85.2,22,18)
 +
*FDIST(67..70,6,8)
  
This function is to determine whether two data sets have different degrees of diversity.
+
==Examples==
 +
#=FDIST(20.6587,7,3) = 0.01526530981
 +
#=FDIST(70.120045,12.2,6.35) = 0.000011229898
 +
#=FDIST(10,1.3,1.5) = 0.12923064798773362
 +
#=FDIST(-28,4,6) = #N/A (NUMBER > 0)
  
</div>
+
==Related Videos==
----
+
{{#ev:youtube|7rGAh_XDvY8|280|center|F Distribution}}
<div id="7SpaceContent" class="zcontent" align="left">
 
  
·          Arguments should be numeric.
+
==See Also==
 +
*[[Manuals/calci/FINV  | FINV ]]
 +
*[[Manuals/calci/FTEST  | FTEST ]]
  
·          FDIST shows the error value, when x is negative and DF1&lt;1 or DF1 is less than or equal to 10^10 and DF2&lt;1 or  DF2 is grater than 10^10.
+
==References==
 +
[http://en.wikipedia.org/wiki/F-distribution F-Distribution]
  
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
FDIST
 
  
</div></div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
  
Lets see an example,
+
*[[ Z3 Z3 home ]]
 
 
FDIST(X,DF1,DF2)
 
 
 
'''B'''
 
 
 
15.20686
 
 
 
5
 
 
 
3
 
 
 
<nowiki>=FDIST(B2,B3,B4)</nowiki>
 
 
 
</div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="   " | Column3
 
| class="                                                          " |
 
|- class="odd"
 
| class=" " | Row1
 
| class=" " | 15.20686
 
| class="sshl_f" | NaN
 
| class="sshl_f" |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 5
 
| class="sshl_f      " |
 
| class="sshl_f    " |
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f " | 3
 
| class="sshl_f  " |
 
|
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class=" " |
 
|
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class=" " |
 
|
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" |
 
| class="sshl_f  " |
 
| class=" " |
 
|
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Latest revision as of 09:10, 2 June 2020

FDIST (Number,DegreeOfFreedom1,DegreeOfFreedom2)


  • is the value of the function
  • and are numbers of degrees of freedom.
    • FDIST(), returns the F probability distribution.

Description

  • This function gives the value of F probability distribution.
  • This distribution is continuous probability distribution and it is called Fisher-Snedecor distribution.
  • The F distribution is an asymmetric distribution that has a minimum value of 0, but no maximum value.
  • In is the value of the function , is the numerator degrees of freedom and is the denominator degrees of freedom.
  • This distribution is the ratio of two chi-square distributions with degrees of freedom r1 and r2, respectively, where each chi-square has first been divided by its degrees of freedom.
  • The Probability density function of the F distribution is:

where is the Gamma Function.

  • The gamma function is defined by .

When the value of DegreeOfFreedom1 and DegreeOfFreedom2 are not integers ,then it is converted in to integers.

  • This function will give the result as error when
 1. any one of the argument is non-numeric.
 2. Number is negative
 3. If DegreeOfFreedom1<1  or DegreeOfFreedom2> and  DegreeOfFreedom2<1 or DegreeOfFreedom2> 

ZOS

  • The syntax is to find FDIST in ZOS is .
    • is the value of the function.
  • For e.g.,FDIST(85.2,22,18)
  • FDIST(67..70,6,8)

Examples

  1. =FDIST(20.6587,7,3) = 0.01526530981
  2. =FDIST(70.120045,12.2,6.35) = 0.000011229898
  3. =FDIST(10,1.3,1.5) = 0.12923064798773362
  4. =FDIST(-28,4,6) = #N/A (NUMBER > 0)

Related Videos

F Distribution

See Also

References

F-Distribution