Difference between revisions of "Manuals/calci/LOGNORMDIST"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''LOGNORMDIST'''(n,'''m''',''' sd''') '''Where n''' is the value for which the function is evaluated and m ...") |
|||
(24 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''LOGNORMDIST(Number,Mean,StandardDeviation,Accuracy)'''</div><br/> |
+ | *<math>Number</math> is the value. | ||
+ | *<math>Mean </math> is the mean value of <math>log(x)</math>, | ||
+ | *<math>StandardDeviation</math> is the standard deviation value of <math>log(x)</math>. | ||
+ | *<math>Accuracy</math> is correct decimal places for the result. | ||
+ | ** LOGNORMDIST(), returns the cumulative lognormal distribution. | ||
− | ' | + | ==Description== |
+ | *This function gives the value of the cumulative log normal distribution. | ||
+ | *This distribution is the continuous probability distribution. | ||
+ | *Lognomal distribution is also called Galton's distribution. | ||
+ | *A random variable which is log-normally distributed takes only positive real values. | ||
+ | *Suppose <math>x</math> is Normally Distributed function, then <math> y=ln(x)</math> also Normally Distributed | ||
+ | *<math> z=exp(y)</math> also Normally Distributed. | ||
+ | *Let the Normal Distribution function <math>x</math> and its Mean= <math>\mu</math>, Standard Deviation = <math>\sigma</math> | ||
+ | *Then the lognormal cumulative distribution is calculated by: | ||
+ | <math>F(x,\mu,\sigma)=\frac{1}{2} \left[1+ erf \left (\frac{ln(x)-\mu)}{\sigma \sqrt{2}}\right)\right ]= \varphi\left[\frac{ln(x)-\mu}{\sigma}\right ]</math> | ||
+ | where <math>erf</math> is the error function,. The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics and partial differential equations. | ||
+ | *And <math>\phi</math> is the Cumulative Distribution function of the Standard Normal distribution. | ||
+ | *This function will give the result as error when | ||
+ | 1. Any one of the argument is non-numeric. | ||
+ | 2. Suppose <math> Number \le 0 </math> or <math> StandardDeviation \le 0</math> | ||
− | + | ==ZOS== | |
+ | *The syntax is to calculate cumulative log normal distribution in ZOS is <math>LOGNORMDIST(Number,Mean,StandardDeviation,Accuracy)</math>. | ||
+ | **<math>Number</math> is the value. | ||
+ | **<math>Mean </math> is the mean value of <math>log(x)</math>. | ||
+ | **<math> StandardDeviation</math> is the standard deviation value of <math>log(x)</math>. | ||
+ | *For e.g.,LOGNORMDIST(10,8.002,4.501) | ||
+ | {{#ev:youtube|rFnzI4pLSuo|280|center|Log Normal Distribution}} | ||
− | + | ==Examples== | |
+ | #=LOGNORMDIST(2,5.4,2.76) = 0.044061652 | ||
+ | #=LOGNORMDIST(10,24.05,12.95) = 0.046543186 | ||
+ | #=LOGNORMDIST(50,87.0036,42.9784) = 0.026597569 | ||
+ | #=LOGNORMDIST(-10,5,2) = #N/A (NUMBER GREATER THAN (OR) NOT EQUAL TO 0) | ||
− | + | ==Related Videos== | |
− | |||
− | |||
− | + | {{#ev:youtube|9rMpraPPQ2A|280|center|Lognormal Distribution}} | |
− | + | ==See Also== | |
− | + | *[[Manuals/calci/LN | LN ]] | |
− | + | *[[Manuals/calci/LOG10 | LOG10 ]] | |
+ | *[[Manuals/calci/EXP | EXP ]] | ||
− | + | ==References== | |
+ | [http://en.wikipedia.org/wiki/Log-normal_distribution Log-normal distribution] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 09:22, 2 June 2020
LOGNORMDIST(Number,Mean,StandardDeviation,Accuracy)
- is the value.
- is the mean value of ,
- is the standard deviation value of .
- is correct decimal places for the result.
- LOGNORMDIST(), returns the cumulative lognormal distribution.
Description
- This function gives the value of the cumulative log normal distribution.
- This distribution is the continuous probability distribution.
- Lognomal distribution is also called Galton's distribution.
- A random variable which is log-normally distributed takes only positive real values.
- Suppose is Normally Distributed function, then also Normally Distributed
- also Normally Distributed.
- Let the Normal Distribution function and its Mean= , Standard Deviation =
- Then the lognormal cumulative distribution is calculated by:
where is the error function,. The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics and partial differential equations.
- And is the Cumulative Distribution function of the Standard Normal distribution.
- This function will give the result as error when
1. Any one of the argument is non-numeric. 2. Suppose or
ZOS
- The syntax is to calculate cumulative log normal distribution in ZOS is .
- is the value.
- is the mean value of .
- is the standard deviation value of .
- For e.g.,LOGNORMDIST(10,8.002,4.501)
Examples
- =LOGNORMDIST(2,5.4,2.76) = 0.044061652
- =LOGNORMDIST(10,24.05,12.95) = 0.046543186
- =LOGNORMDIST(50,87.0036,42.9784) = 0.026597569
- =LOGNORMDIST(-10,5,2) = #N/A (NUMBER GREATER THAN (OR) NOT EQUAL TO 0)
Related Videos
See Also
References