Difference between revisions of "Manuals/calci/Pascal Triangle Fun"
Jump to navigation
Jump to search
(Created page with " ==Pascal Triangle Fun== === Sierpiński triangle == <pre> //with 32 m=32; pt=PASCALTRIANGLE(m).$(x=>x%2) a=pt .map( function (r,i) { var prefix= (REPEATCHAR(" ",(2...") |
|||
| (10 intermediate revisions by the same user not shown) | |||
| Line 3: | Line 3: | ||
==Pascal Triangle Fun== | ==Pascal Triangle Fun== | ||
| − | === Sierpiński triangle == | + | === Sierpiński triangle === |
| + | |||
| + | [https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle Sierpierski Triangle] | ||
| + | |||
<pre> | <pre> | ||
//with 32 | //with 32 | ||
| Line 23: | Line 26: | ||
</pre> | </pre> | ||
| + | |||
| + | ===Fibonacci and Pascal Triangle=== | ||
| + | <pre> | ||
| + | FIBONNACI(100) | ||
| + | b=PASCALTRIANGLE(100) | ||
| + | b.map( | ||
| + | function calcfib(r,i,d) | ||
| + | { | ||
| + | var fib=0; | ||
| + | var j=0; | ||
| + | for(var xi=i;xi>=0;xi--) | ||
| + | { | ||
| + | fib+=isNaN(d[xi][j])?0:d[xi][j]; | ||
| + | j++; | ||
| + | } | ||
| + | return(fib) | ||
| + | } | ||
| + | ) | ||
| + | </pre> | ||
| + | |||
| + | |||
| + | ==Pascal Triangle and Figurate Numbers== | ||
| + | |||
| + | PASCALTRIANGLE(10) | ||
| + | |||
| + | [https://en.wikipedia.org/wiki/Figurate_number] | ||
| + | |||
| + | [https://www.mathsisfun.com/algebra/triangular-numbers.html Triangular Numbers] | ||
| + | |||
| + | [https://en.wikipedia.org/wiki/Tetrahedral_number Tetrahedral Numbers] | ||
| + | |||
| + | [https://en.wikipedia.org/wiki/Figurate_number Figurate Number] | ||
| + | |||
| + | <pre> | ||
| + | figuratenumbers=(n,r)=>(n+r-1)!C!r; | ||
| + | a=[1..10,0..10]@figuratenumbers; | ||
| + | a.parts(10) | ||
| + | </pre> | ||
| + | |||
| + | ==Lucas, Fibonacci, Golden Ratio Relationship == | ||
| + | |||
| + | <pre> | ||
| + | FIBONACCI(50) | ||
| + | |||
| + | LUCAS(50) | ||
| + | |||
| + | FIBONACCI(50) | ||
| + | .pieces(2) | ||
| + | .map(r=>r[1]/r[0]) | ||
| + | |||
| + | GOLDENRATIO() | ||
| + | |||
| + | LUCAS(50) | ||
| + | .pieces(2) | ||
| + | .map(r=>r[1]/r[0]) | ||
| + | |||
| + | ROUND((GOLDENRATIO())^(1..10)) | ||
| + | |||
| + | [(1+√5)/2,(1+√5)/2] | ||
| + | |||
| + | ops.on; | ||
| + | [(1+√5d100)/2,(1-√5d100)/2] | ||
| + | |||
| + | </pre> | ||
| + | |||
| + | |||
| + | ===Pretty Pascal Triangle=== | ||
| + | <pre> | ||
| + | m=10; | ||
| + | pt=PASCALTRIANGLE(m) | ||
| + | pt | ||
| + | .map( | ||
| + | function (r,i) | ||
| + | { | ||
| + | var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); | ||
| + | return( | ||
| + | prefix | ||
| + | .concat(r.join(", ,").split(",")) | ||
| + | .concat(prefix) | ||
| + | ) | ||
| + | } | ||
| + | ); | ||
| + | |||
| + | <pre> | ||
| + | |||
| + | Now we can use: | ||
| + | <pre> | ||
| + | PASCALTRIANGLE(10,true) | ||
| + | <pre> | ||
Latest revision as of 11:33, 7 August 2020
Pascal Triangle Fun
Sierpiński triangle
//with 32
m=32;
pt=PASCALTRIANGLE(m).$(x=>x%2)
a=pt
.map(
function (r,i)
{
var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split(""));
return(
prefix
.concat(r.join(", ,").split(","))
.concat(prefix)
)
}
);
(a);
Fibonacci and Pascal Triangle
FIBONNACI(100)
b=PASCALTRIANGLE(100)
b.map(
function calcfib(r,i,d)
{
var fib=0;
var j=0;
for(var xi=i;xi>=0;xi--)
{
fib+=isNaN(d[xi][j])?0:d[xi][j];
j++;
}
return(fib)
}
)
Pascal Triangle and Figurate Numbers
PASCALTRIANGLE(10)
figuratenumbers=(n,r)=>(n+r-1)!C!r; a=[1..10,0..10]@figuratenumbers; a.parts(10)
Lucas, Fibonacci, Golden Ratio Relationship
FIBONACCI(50) LUCAS(50) FIBONACCI(50) .pieces(2) .map(r=>r[1]/r[0]) GOLDENRATIO() LUCAS(50) .pieces(2) .map(r=>r[1]/r[0]) ROUND((GOLDENRATIO())^(1..10)) [(1+√5)/2,(1+√5)/2] ops.on; [(1+√5d100)/2,(1-√5d100)/2]
Pretty Pascal Triangle
m=10;
pt=PASCALTRIANGLE(m)
pt
.map(
function (r,i)
{
var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split(""));
return(
prefix
.concat(r.join(", ,").split(","))
.concat(prefix)
)
}
);
Now we can use:
PASCALTRIANGLE(10,true)