Difference between revisions of "Manuals/calci/KRUSKALWALLISTEST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 35: Line 35:
 
**6.State Results:In this step we have to take a decision of null hypothesis either accept or reject depending on the  critical value table.
 
**6.State Results:In this step we have to take a decision of null hypothesis either accept or reject depending on the  critical value table.
 
**7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.
 
**7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.
==Example==
+
==Examples==
 +
1.
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
!  !! A !! B
 +
|-
 +
! 1
 +
| '''Temperature''' || '''Drying Time(Hrs)'''
 +
|-
 +
! 2
 +
| 54 || 8
 +
|-
 +
! 3
 +
| 63  || 6
 +
|-
 +
! 4
 +
| 75 || 3 
 +
|-
 +
! 5
 +
| 82 || 1
 +
|}
  
{| class="SpreadSheet notepad" id="TABLE1" rcid="TABLE1" title="TABLE1" style="width: auto; position: relative; height: auto;" |
+
=REGRESSIONANALYSIS(A2:A5,B2:B5,0.65,0)
|+
 
Raw Scores
 
  
|- class="even" r="1" style="position: relative;" |
+
'''REGRESSION ANALYSIS OUTPUT'''
| c="A" style="position: relative; overflow: visible; width: 69px;" | Method1
+
{| class="wikitable"
| c="B" style="position: relative; overflow: visible; width: 71px;" | Method2
+
|+Summary Output
| c="C" style="position: relative; overflow: visible; width: 70px;" | Method3
+
|-
 
+
! Regression Statistics !!
|- class="odd" r="2"  
+
|-
| style="width: 69px;" | 94
+
| Multiple R || 0.9989241524588297
| style="width: 71px;" | 82
+
|-
| style="width: 70px;" | 89
+
| R Square ||0.9978494623655914
 
+
|-
|- class="even" r="3"
+
|ADJUSTEDRSQUARE || 0.996774193548387
| style="width: 69px;" | 87
+
|-
| style="width: 71px;" | 85
+
|STANDARDERROR || 0.7071067811865526
| style="width: 70px;" | 68
+
|-
 
+
|OBSERVATIONS || 4
|- class="odd" r="4"
+
|}
| style="width: 69px;" | 90
+
{| class="wikitable"
| style="width: 71px;" | 79
+
|+ANOVA
| style="width: 70px;" | 72
+
|-
 
+
! !!DF !!SS!! MS!!F !!SIGNIFICANCE F
|- class="even" r="5"
+
|-
| style="width: 69px;" | 74
+
| REGRESSION ||1 || 464 || 464 || 927.9999999999868 || 0.001075847541170237
| style="width: 71px;" | 84
+
|-
| style="width: 70px;" | 76
+
|RESIDUAL ||2 || 1.0000000000000142 || 0.5000000000000071 ||   ||
 
+
|-
|- class="odd" r="6"
+
|TOTAL ||3 || 465 ||   ||   ||
| style="width: 69px;" | 86
+
|}
| style="width: 71px;" | 61
+
{| class="wikitable"
| style="width: 70px;" | 69
+
|-
 
+
! !!COEFFICIENTS !!STANDARD ERROR !!T STAT!!P-VALUE!!LOWER 95%!!UPPER 95%
|- class="even" r="7"
+
|-
| style="width: 69px;" | 97
+
|INTERCEPT || 86.5 || 0.6885767430246896 || 125.62143708199342 || 0.00006336233990811291 || 83.53729339698282 || 89.46270660301718
| style="width: 71px;" | 72
+
|-
| style="width: 70px;" | 65
+
|INDEP1 || -4.000000000000007 || 0.1313064328597235 || -30.46309242345547 || 0.0010758475411701829 || -4.564965981777561 || -3.4350340182224532
 
 
|- class="odd" r="8"
 
| style="width: 69px;" | 0
 
| style="width: 71px;" | 80
 
| style="width: 70px;" | 0
 
|}  
 
 
 
 
 
#=LEVENESTEST(B1:C5,.05,0)
 
 
 
 
 
{| class="SpreadSheet notepad" id="TABLE5" rcid="TABLE5" title="TABLE5" style="width: auto; position: relative; height: auto;" |
 
|+ KRUSKAL WALLIS TEST
 
Ranking
 
 
 
|- class="even" r="1" style="position: relative;" |
 
| c="A" style="position: relative; overflow: visible; width: 69px;" | Method1
 
| c="B" style="position: relative; overflow: visible; width: 71px;" | Method2
 
| c="C" style="position: relative; overflow: visible; width: 70px;" | Method3
 
 
 
|- class="odd" r="2"
 
| style="width: 69px;" | 18
 
| style="width: 71px;" | 11
 
| style="width: 70px;" | 16
 
 
 
|- class="even" r="3"
 
| style="width: 69px;" | 15
 
| style="width: 71px;" | 13
 
| style="width: 70px;" | 3
 
 
 
|- class="odd" r="4"
 
| style="width: 69px;" | 17
 
| style="width: 71px;" | 9
 
| style="width: 70px;" | 5.5
 
 
 
|- class="even" r="5"
 
| style="width: 69px;" | 7
 
| style="width: 71px;" | 12
 
| style="width: 70px;" | 8
 
 
 
|- class="odd" r="6"
 
| style="width: 69px;" | 14
 
| style="width: 71px;" | 1
 
| style="width: 70px;" | 4
 
 
 
|- class="even" r="7"
 
| style="width: 69px;" | 19
 
| style="width: 71px;" | 5.5
 
| style="width: 70px;" | 2
 
 
 
|- class="odd" r="8"
 
| style="width: 69px;" |  
 
| style="width: 71px;" | 10
 
| style="width: 70px;" |  
 
|}  
 
 
 
{| class="SpreadSheet notepad" id="TABLE6" rcid="TABLE6" title="TABLE6" style="width: auto; position: relative; height: auto;" |
 
|+
 
TEST RESULTS
 
 
 
|- class="even" r="1" style="position: relative;" |
 
| c="A" style="position: relative; overflow: visible; width: 122px;" |
 
| c="B" style="position: relative; overflow: visible; width: 173px;" | Method1
 
| c="C" style="position: relative; overflow: visible; width: 146px;" | Method2
 
| c="D" style="position: relative; overflow: visible; width: 155px;" | Method3
 
 
 
|- class="odd" r="2"
 
| style="width: 122px;" | Sum of Ranks
 
| style="width: 173px;" | 90
 
| style="width: 146px;" | 61.5  
 
| style="width: 155px;" | 38.5
 
 
 
|- class="even" r="3"
 
| style="width: 122px;" | Group Size
 
| style="width: 173px;" | 6
 
| style="width: 146px;" | 7
 
| style="width: 155px;" | 6
 
 
 
|- class="odd" r="4"
 
| style="width: 122px;" | R^2/n
 
| style="width: 173px;" | 1350
 
| style="width: 146px;" | 540.3214285714286
 
| style="width: 155px;" | 247.04166666666666
 
 
 
|- class="even" r="5"
 
| style="width: 122px;" | TotalRankSum
 
| style="width: 173px;" | 190
 
 
 
|- class="odd" r="6"
 
| style="width: 122px;" | Total Group Size
 
| style="width: 173px;" | 19
 
 
 
|- class="even" r="7"
 
| style="width: 122px;" | Total R^2/n
 
| style="width: 173px;" | 2137.363095238095
 
 
 
|- class="odd" r="8"
 
| style="width: 122px;" | H
 
| style="width: 173px;" | 7.495676691729315
 
 
 
|- class="even" r="9"
 
| style="width: 122px;" | df
 
| style="width: 173px;" | 2
 
 
 
|- class="odd" r="10"
 
| style="width: 122px;" | p-value
 
| style="width: 173px;" | 0.023568638074462633
 
 
 
|- class="even" r="11"
 
| style="width: 122px;" | a
 
| style="width: 173px;" | 0.05
 
 
|}
 
|}
  

Revision as of 14:54, 11 August 2020

KRUSKALWALLISTEST (SampleDataByGroup,ConfidenceLevel,NewTableFlag)


  • is the set of values to find the test statistic.
  • is the value between 0 and 1.
  • is either TRUE or FALSE.


Description

  • This function gives the test statistic value of the Kruskal Wallis test.
  • It is one type of Non parametric test.
  • It is a logical extension of the Wilcoxon-Mann-Whitney Test.
  • The parametric equivalent of the Kruskal-Wallis test is the one-way analysis of variance (ANOVA).
  • This test is used for comparing more than two sample that are independent or not related.
  • It is used to test the null hypothesis that all populations have identical distribution functions against the alternative hypothesis that at least two of the samples differ only with respect to Median.
  • Kruskal–Wallis is also used when the examined groups are of unequal size.
  • When the Kruskal-Wallis test leads to significant results, then at least one of the samples is different from the other samples.
  • The test does not identify where the differences occur or how many differences actually occur.
  • Since it is a non-parametric method, the Kruskal–Wallis test does not assume a normal distribution of the residuals, unlike the analogous one-way analysis of variance.
  • However, the test does assume an identically shaped and scaled distribution for each group, except for any difference in medians.
  • The Kruskal Wallis test data are having the following properties:
  • 1.The data points must be independent from each other.
  • 2.The distributions do not have to be normal and the variances do not have to be equal.
  • 3.The data points must be more than five per sample.
  • 4.All individuals must be selected at random from the population.
  • 5.All individuals must have equal chance of being selected.
  • 6.Sample sizes should be as equal as possible but some differences are allowed.
  • Steps for Kruskal Wallis Test:
    • 1. Define Null and Alternative Hypotheses:
  • Null Hypotheses:There is no difference between the conditions.
  • Alternative Hypotheses:There is a difference between the conditions.
    • 2.State Alpha:Alpha=0.05.
    • 3.Calculate degrees of freedom:df = k – 1, where k = number of groups.
    • 4.State Decision Rule:From the Chi squared table calculate the critical value.
  • Suppose the is greater than the critical value then reject the null hypothesis
    • 5.Calculate the Test Statistic:
    • 6.State Results:In this step we have to take a decision of null hypothesis either accept or reject depending on the critical value table.
    • 7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.

Examples

1.

Spreadsheet
A B
1 Temperature Drying Time(Hrs)
2 54 8
3 63 6
4 75 3
5 82 1
=REGRESSIONANALYSIS(A2:A5,B2:B5,0.65,0)

REGRESSION ANALYSIS OUTPUT

Summary Output
Regression Statistics
Multiple R 0.9989241524588297
R Square 0.9978494623655914
ADJUSTEDRSQUARE 0.996774193548387
STANDARDERROR 0.7071067811865526
OBSERVATIONS 4
ANOVA
DF SS MS F SIGNIFICANCE F
REGRESSION 1 464 464 927.9999999999868 0.001075847541170237
RESIDUAL 2 1.0000000000000142 0.5000000000000071
TOTAL 3 465
COEFFICIENTS STANDARD ERROR T STAT P-VALUE LOWER 95% UPPER 95%
INTERCEPT 86.5 0.6885767430246896 125.62143708199342 0.00006336233990811291 83.53729339698282 89.46270660301718
INDEP1 -4.000000000000007 0.1313064328597235 -30.46309242345547 0.0010758475411701829 -4.564965981777561 -3.4350340182224532

Related Videos

Kruskal Wallis Test

See Also

References