Difference between revisions of "Manuals/calci/GAMMAFUNCTION"

From ZCubes Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by 2 users not shown)
Line 10: Line 10:
 
*For complex numbers with a positive real part, it is defined via a convergent improper integral:
 
*For complex numbers with a positive real part, it is defined via a convergent improper integral:
 
<math>\Gamma (z) = \int\limits_{0}^{\infty} x^{z-1} e^{-x} dx </math>
 
<math>\Gamma (z) = \int\limits_{0}^{\infty} x^{z-1} e^{-x} dx </math>
 +
*This function will return the result as NaN when the given number as negative or Non numeric.
 +
 +
 +
==Examples==
 +
#GAMMAFUNCTION(2) = 1.0000026676984093
 +
#GAMMAFUNCTION(45.3) = 8.308990531109891e+54
 +
#GAMMAFUNCTION(-3) = #N/A (#NUM!)
 +
 +
==Related Videos==
 +
{{#ev:youtube|v=XZIVrkkYBRI|280|center|Gamma Function}}
 +
 +
==See Also==
 +
*[[Manuals/calci/GAMMADIST | GAMMADIST]]
 +
*[[Manuals/calci/SUM  | SUM ]]
 +
 +
 +
==References==
 +
*[https://en.wikipedia.org/wiki/Gamma_function Gamma Function]
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:55, 12 August 2020

GAMMAFUNCTION (z)


  • is any positive real number.

Description

  • This function gives the value of the Gamma function.
  • The Gamma function is defined to be an extension of the factorial to complex and real number arguments.
  • That is, if n is a positive integer:

  • Gamma function is defined for all complex numbers except the non-positive integers.
  • For complex numbers with a positive real part, it is defined via a convergent improper integral:

  • This function will return the result as NaN when the given number as negative or Non numeric.


Examples

  1. GAMMAFUNCTION(2) = 1.0000026676984093
  2. GAMMAFUNCTION(45.3) = 8.308990531109891e+54
  3. GAMMAFUNCTION(-3) = #N/A (#NUM!)

Related Videos

Gamma Function

See Also


References