Difference between revisions of "ZCubes/Pascal vs Sierpinski Triangle"
Jump to navigation
Jump to search
(→Video) |
(→Code) |
||
Line 9: | Line 9: | ||
==Code== | ==Code== | ||
− | m=10; | + | m=10; |
− | pt=PASCALTRIANGLE(m); | + | pt=PASCALTRIANGLE(m); |
− | a=pt | + | a=pt |
− | + | .map( | |
− | + | function(r,i) | |
− | + | { | |
var prefix=(REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); | var prefix=(REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); | ||
return( | return( | ||
Line 20: | Line 20: | ||
.concat(r.join(", ,").split(",")) | .concat(r.join(", ,").split(",")) | ||
.concat(prefix) | .concat(prefix) | ||
− | + | ) | |
− | + | } | |
− | + | ); | |
− | (a); | + | (a); |
− | m=32; | + | m=32; |
− | pt=PASCALTRIANGLE(m); | + | pt=PASCALTRIANGLE(m); |
− | m=10; | + | m=10; |
− | pt=PASCALTRIANGLE(m).$(x=>x%2) | + | pt=PASCALTRIANGLE(m).$(x=>x%2) |
− | a=pt | + | a=pt |
− | + | .map( | |
− | + | function(r,i) | |
− | + | { | |
var prefix=(REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); | var prefix=(REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); | ||
return( | return( | ||
Line 43: | Line 43: | ||
} | } | ||
); | ); | ||
− | (a); | + | (a); |
− | m=32; | + | m=32; |
− | m=64; | + | m=64; |
==Code== | ==Code== |
Revision as of 04:40, 18 August 2020
Pascal vs Sierpinski Triangle
This video demonstrates how to generate Pascal triangle in Z and derive Sierpinski triangle from Pascal triangle in ZCubes.
Video
Code
m=10; pt=PASCALTRIANGLE(m); a=pt .map( function(r,i) { var prefix=(REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); return( prefix .concat(r.join(", ,").split(",")) .concat(prefix) ) } ); (a);
m=32; pt=PASCALTRIANGLE(m);
m=10; pt=PASCALTRIANGLE(m).$(x=>x%2) a=pt .map( function(r,i) { var prefix=(REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); return( prefix .concat(r.join(", ,").split(",")) .concat(prefix) ) } ); (a);
m=32;
m=64;
Code
m=32; pt=PASCALTRIANGLE(m).$(x=>x%2) a=pt .map(function (r,i) { var prefix= (REPEATCHAR(" ",(2*m-(2*i+1))/2).split("")); return( prefix .concat(r.join(", ,").split(",")) .concat(prefix) ) } ); (a);
<< ZCubes Videos
<< About ZCubes
© Copyright 1996-2020, ZCubes, Inc.