Difference between revisions of "Manuals/calci/BETAINV"
Jump to navigation
Jump to search
(9 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size: | + | <div style="font-size:25px">'''BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)'''</div><br/> |
− | *<math> | + | *<math>Probability</math> is the probability value associated with the beta distribution. |
− | *<math> | + | *<math>Alpha</math> & <math>Beta</math> are the values of the shape parameter. |
− | *<math> | + | *<math>LowerBound</math> & <math>UpperBound</math> the lower and upper limit to the interval of <math>x</math>. |
+ | *<math>Accuracy</math> gives accurate value of the solution. | ||
+ | *<math>DivisionsAndDepthArray</math> is the value of the division. | ||
+ | **BETAINV(), returns the inverse of the Cumulative Distribution Function for a specified beta distribution. | ||
+ | |||
==Description== | ==Description== | ||
*This function gives the inverse value of Cumulative Beta Probability Distribution. | *This function gives the inverse value of Cumulative Beta Probability Distribution. | ||
*It is called Inverted Beta Function or Beta Prime. | *It is called Inverted Beta Function or Beta Prime. | ||
− | *In <math>BETAINV( | + | *In <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>, <math>Probability</math> is the probability value associated with Beta Distribution, <math>Alpha</math> and <math>Beta</math> are the values of two positive shape parameters and <math>LowerBound</math> and <math>UpperBound</math> are the lower and upper limit. |
− | *Normally the limit values are optional, i.e. when we are giving the values of <math> | + | *Normally the limit values are optional, i.e. when we are giving the values of <math>LowerBound</math>&<math>UpperBound</math> then the result value is from <math>a</math> and <math>b</math>. |
− | *When we are omitting the values <math> | + | *When we are omitting the values <math>LowerBound</math> and <math>UpperBound</math>, by default it will consider <math>LowerBound=0</math> and <math>UpperBound=1</math>, so the result value is from <math>0</math> and <math>1</math>. |
− | *If <math>BETADIST( | + | *If <math>BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)=Probability</math>, then <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)=x</math>. |
*<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result. | *<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result. | ||
*This function will give the error result when | *This function will give the error result when | ||
1.Any one of the arguments are non-numeric | 1.Any one of the arguments are non-numeric | ||
− | 2. | + | 2.Alpha or Beta <math>\le</math> 0 |
− | 3.< | + | 3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound |
− | 4.we are not mentioning the limit values for | + | 4.we are not mentioning the limit values for LowerBound & UpperBound , |
− | by default it will consider the Standard Cumulative Beta Distribution, | + | by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1 |
+ | |||
+ | ==ZOS== | ||
+ | |||
+ | *The syntax is to calculate of this function in ZOS is <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>. | ||
+ | **<math>probability</math> is the probability value associated with the beta distribution. | ||
+ | **<math>Alpha</math> and <math>Beta</math> are the values of the shape parameter. | ||
+ | **For e.g.,BETAINV(0.30987,10,18,12,16) | ||
==Examples== | ==Examples== | ||
Line 24: | Line 35: | ||
#BETAINV(0.685470581,5,8,2,6) = 3.75 | #BETAINV(0.685470581,5,8,2,6) = 3.75 | ||
#BETAINV(0.75267,1,7,7,9) = 7.25 | #BETAINV(0.75267,1,7,7,9) = 7.25 | ||
− | #BETAINV(0.5689,-2,4,3,5) = | + | #BETAINV(0.5689,-2,4,3,5) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0) |
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=KjlIoium8n4|280|center|Beta Inverse Distribution}} | ||
==See Also== | ==See Also== | ||
Line 31: | Line 46: | ||
==References== | ==References== | ||
− | [http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution] | + | [http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution] |
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 03:50, 24 August 2020
BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)
- is the probability value associated with the beta distribution.
- & are the values of the shape parameter.
- & the lower and upper limit to the interval of .
- gives accurate value of the solution.
- is the value of the division.
- BETAINV(), returns the inverse of the Cumulative Distribution Function for a specified beta distribution.
Description
- This function gives the inverse value of Cumulative Beta Probability Distribution.
- It is called Inverted Beta Function or Beta Prime.
- In , is the probability value associated with Beta Distribution, and are the values of two positive shape parameters and and are the lower and upper limit.
- Normally the limit values are optional, i.e. when we are giving the values of & then the result value is from and .
- When we are omitting the values and , by default it will consider and , so the result value is from and .
- If , then .
- use the iterating method to find the value of .suppose the iteration has not converged after 100 searches, then the function gives the error result.
- This function will give the error result when
1.Any one of the arguments are non-numeric 2.Alpha or Beta 0 3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound 4.we are not mentioning the limit values for LowerBound & UpperBound , by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1
ZOS
- The syntax is to calculate of this function in ZOS is .
- is the probability value associated with the beta distribution.
- and are the values of the shape parameter.
- For e.g.,BETAINV(0.30987,10,18,12,16)
Examples
- BETAINV(0.2060381025,5,9,2,6) = 3
- BETAINV(0.359492343,8,10) = 1.75
- BETAINV(0.685470581,5,8,2,6) = 3.75
- BETAINV(0.75267,1,7,7,9) = 7.25
- BETAINV(0.5689,-2,4,3,5) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0)
Related Videos
See Also
References