Difference between revisions of "Graphics Render Examples"

From ZCubes Wiki
Jump to navigation Jump to search
Line 123: Line 123:
  
 
==Example 1 ==
 
==Example 1 ==
 +
 +
[[File:Wki cycloid1.jpg|thumb|left|Cycloid (fig.1)]]
 
<pre>
 
<pre>
 
numpoints=50;
 
numpoints=50;
Line 141: Line 143:
 
""
 
""
 
</pre>
 
</pre>
[[File:Wki cycloid1.jpg|thumb|left|Cycloid (fig.1)]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
 
==Example 2 ==
 
==Example 2 ==
 +
Rendering two cardioid. A smaller and a larger one.
 +
[[File:Wki cycloid2.jpg|thumb|left|Two Cycloids (fig.2)]]
 
<pre>
 
<pre>
 
numpoints=50;
 
numpoints=50;
Line 201: Line 186:
 
""
 
""
 
</pre>
 
</pre>
[[File:Wki cycloid2.jpg|thumb|left|Two Cycloids (fig.2)]]
 

Revision as of 16:56, 21 October 2020

Graphics Render Examples

Line and Triangle Examples

Points connecting two intersecting lines at an angle (or two sides of a triangle). Three sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the three line sets. Two lines are connected with the point sets on the lines diagonally opposite points

Lines3-1.jpg
pointcoords=POLYPOINTS(3,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[0])).m(r=>r.flatten())
var d=	[
		["type","coordinates","count"],
		["line",lines1,lines1.length],
	]
RENDER(d) ""

Lines are connected with the point sets on the lines diagonally opposite all three line sets

Lines3-3.jpg
pointcoords=POLYPOINTS(3,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[2])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[0])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[1])).m(r=>r.flatten())
var d=	[	["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length],
		["line",lines3,lines3.length]	]
RENDER(d) ""

Four sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the four line sets. Lines are rendered with the set of points and the type of object to render, given to the RENDER function.

Lines-poly4-lines0.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
var d=	[
		["type","coordinates","count"],
		["line",lines1,lines1.length]
	]

RENDER(d) 
""

Two line sets rendered in this example.

Lines-poly4-lines12.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
var d=	[	["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length] 	
	]

RENDER(d) 
""

Four line sets rendered in this example.

Lines-poly4-lines01234.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
var d=	[	["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length],
		["line",lines3,lines3.length],
		["line",lines4,lines4.length]	]

RENDER(d)
""

Four line sets and lines across are rendered in this example.

Lines-poly4-lines01234+cage0213.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
lines5=(s[2].rowpush(s[0])).m(r=>r.flatten())
lines6=(s[1].rowpush(s[3])).m(r=>r.flatten())
var d=	[
		["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length],
		["line",lines3,lines3.length],
		["line",lines4,lines4.length],	
		["line",lines5,lines5.length],
		["line",lines6,lines6.length]
	]

RENDER(d)
""


Cardioid Examples

Following the "the midpoints of the circles lie on the perimeter of the fixed generator circle" method to draw a cardioid:

1) Choose a circle c and a point p on its perimeter, 2) Draw circles containing point p with centers on the perimeter of circle c

Example 1

Cycloid (fig.1)
numpoints=50;
pts=MAKEPOLYGONPOINTS(numpoints,[50,50],[200,200], 270)
start=pts[0];
circlesat=
	pts
		.map(
			p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
		)

RENDER(
	[
		["type","cx","cy","r","stroke","stroke-width","count"],
		["circle",circlesat.column(0),circlesat.column(1),circlesat.column(2),"red",1,circlesat.length]
	]
)
""


Example 2

Rendering two cardioid. A smaller and a larger one.

Two Cycloids (fig.2)
numpoints=50;
pts=MAKEPOLYGONPOINTS(numpoints,[30,50],[200,200], 150)
start=pts[0];
circlesat1=
	pts
		.map(
			p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
		)

pts=MAKEPOLYGONPOINTS(numpoints,[70,70],[500,200], 0)
start=pts[0];

circlesat2=
	pts
		.map(
			p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
		)

cycloids = RENDER(
	[
		["id","type","cx","cy","r","stroke","stroke-width","count"],
		["cycloid1","circle",circlesat1.column(1),circlesat1.column(0),circlesat1.column(2),"red",1,circlesat1.length],
		["cycloid2","circle",circlesat2.column(1),circlesat2.column(0),circlesat2.column(2),"red",1,circlesat2.length]
	]
)
;
RENDER(
	[
		["id"		, "animate","animationsettings"],
		["cycloid1"	, "animate",[["loop","rotate","duration","easing"],[true,-360,5*1000,"linear"]]]	,
		["cycloid2"	, "animate",[["loop","rotate","duration","easing"],[true,360,5*1000,"linear"]]]
	]                                       
	,
	cycloids
)
""