Difference between revisions of "Manuals/calci/IMARGUMENT"

From ZCubes Wiki
Jump to navigation Jump to search
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMARGUMENT(z)'''</div><br/>
+
<div style="font-size:30px">'''IMARGUMENT(Complexnumber)'''</div><br/>
*<math>z</math> is the complex number is of the form <math>x+iy</math>  
+
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
*<math>n</math> is the order of the Bessel function and is an integer
+
**IMARGUMENT(), returns the argument theta, an angle expressed in radians
 +
 
 
==Description==
 
==Description==
*This function gives the principal value of the argument of the complex-valued expression <math>z</math>.   
+
*This function gives the principal value of an argument of a complex-valued expression <math>z</math>.   
 
* i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
 
* i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
 
*In this function angle value is in Radians.
 
*In this function angle value is in Radians.
*Here IMARGUMENT(z), Where <math>z</math> is the complex number in the form of <math>x+iy</math>. i.e  <math>x</math> & <math>y</math> are the real numbers.
+
*Here <math>IMARGUMENT(Complexnumber)</math>, Where Complexnumber  in the form of <math>z=x+iy</math>. i.e  <math>x</math> & <math>y</math> are the real numbers.
 
*<math>I</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*<math>I</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*An argument of the complex number <math>z = x + iy</math> is any real quantity <math>\phi</math> such that <math>z = x + i y</math> = <math>r cos(\phi) + i r sin(\phi)</math> for some positive real number <math>r</math>.  
 
*An argument of the complex number <math>z = x + iy</math> is any real quantity <math>\phi</math> such that <math>z = x + i y</math> = <math>r cos(\phi) + i r sin(\phi)</math> for some positive real number <math>r</math>.  
Line 13: Line 14:
 
*To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with <math>\frac{180}{\pi}</math>.
 
*To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with <math>\frac{180}{\pi}</math>.
 
*We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number.
 
*We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number.
 +
 +
==ZOS==
 +
*The syntax is to calculate argument of a complex number in ZOS is <math>IMARGUMENT(Complexnumber)</math>.
 +
**<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 +
*For e.g.,IMARGUMENT("6.72+1.5i")
 +
{{#ev:youtube|oO4FgWYhIhw|280|center|Imargument}}
  
 
==Examples==
 
==Examples==
  
#IMARGUMENT("3-2i") = -0.588002604
+
#IMARGUMENT("3-2i") = -0.5880026035475675
#IMARGUMENT("5+6i") = 0.876058051
+
#IMARGUMENT("5+6i") = 0.8760580505981934
 
#IMARGUMENT("2") = 0
 
#IMARGUMENT("2") = 0
#IMARGUMENT("4i") = 1.570796327
+
#IMARGUMENT("4i") = 1.5707963267948966
#DEGREES(IMARGUMENT("2+2i")) = 45
+
#DEGREES(IMARGUMENT("2+2i")) = 45°
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|FwuPXchH2rA|280|center|Complex Number Analysis}}
 +
 
 +
==See Also==
 +
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 +
*[[Manuals/calci/IMREAL  | IMREAL]]
 +
*[[Manuals/calci/IMSUM  | IMSUM ]]
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Bessel_function  Bessel Function]
+
*[http://mathworld.wolfram.com/ComplexArgument.html Complex Argument]
 +
 
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:18, 23 October 2020

IMARGUMENT(Complexnumber)


  • is of the form .
    • IMARGUMENT(), returns the argument theta, an angle expressed in radians

Description

  • This function gives the principal value of an argument of a complex-valued expression .
  • i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
  • In this function angle value is in Radians.
  • Here , Where Complexnumber in the form of . i.e & are the real numbers.
  • imaginary unit ..
  • An argument of the complex number is any real quantity such that = for some positive real number .
  • Where and .
  • The argument of a complex number is calculated by in Radians.
  • To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate argument of a complex number in ZOS is .
    • is of the form .
  • For e.g.,IMARGUMENT("6.72+1.5i")
Imargument

Examples

  1. IMARGUMENT("3-2i") = -0.5880026035475675
  2. IMARGUMENT("5+6i") = 0.8760580505981934
  3. IMARGUMENT("2") = 0
  4. IMARGUMENT("4i") = 1.5707963267948966
  5. DEGREES(IMARGUMENT("2+2i")) = 45°

Related Videos

Complex Number Analysis

See Also

References