Difference between revisions of "Graphics Render Examples"

From ZCubes Wiki
Jump to navigation Jump to search
 
(8 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
=Graphics Render Examples=
 
=Graphics Render Examples=
  
== Line and Triangle Examples ==
+
== Lines, Triangle and Rectangle ==
 
Points connecting two intersecting lines at an angle (or two sides of a triangle).
 
Points connecting two intersecting lines at an angle (or two sides of a triangle).
 
Three sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the three line sets.
 
Three sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the three line sets.
Line 7: Line 7:
 
[[File:Lines3-1.jpg|thumb|left|]]
 
[[File:Lines3-1.jpg|thumb|left|]]
  
<pre>
+
<syntaxhighlight lang="javascript">
 
pointcoords=POLYPOINTS(3,100,100);
 
pointcoords=POLYPOINTS(3,100,100);
 
s=LINESPLIT(pointcoords,10,true)
 
s=LINESPLIT(pointcoords,10,true)
Line 18: Line 18:
 
]
 
]
 
RENDER(d) ""
 
RENDER(d) ""
</pre>
+
</syntaxhighlight>
  
 
Lines are connected with the point sets on the lines diagonally opposite all three line sets
 
Lines are connected with the point sets on the lines diagonally opposite all three line sets
 
[[File:Lines3-3.jpg|thumb|left]]
 
[[File:Lines3-3.jpg|thumb|left]]
<pre>
+
<syntaxhighlight lang="javascript">
 
pointcoords=POLYPOINTS(3,100,100);
 
pointcoords=POLYPOINTS(3,100,100);
 
s=LINESPLIT(pointcoords,10,true)
 
s=LINESPLIT(pointcoords,10,true)
Line 33: Line 33:
 
["line",lines3,lines3.length] ]
 
["line",lines3,lines3.length] ]
 
RENDER(d) ""
 
RENDER(d) ""
</pre>
+
</syntaxhighlight>
 +
 
 
Four sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the four line sets.
 
Four sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the four line sets.
 
Lines are rendered with the set of points and the type of object to render, given to the RENDER function.
 
Lines are rendered with the set of points and the type of object to render, given to the RENDER function.
 
[[File:Lines-poly4-lines0.jpg|thumb|left]]
 
[[File:Lines-poly4-lines0.jpg|thumb|left]]
<pre>
+
<syntaxhighlight lang="javascript">
 
pointcoords=POLYPOINTS(4,100,100);
 
pointcoords=POLYPOINTS(4,100,100);
 
s=LINESPLIT(pointcoords,10,true)
 
s=LINESPLIT(pointcoords,10,true)
Line 51: Line 52:
 
RENDER(d)  
 
RENDER(d)  
 
""
 
""
</pre>
+
</syntaxhighlight>
  
Two line sets rendered in this example.
+
Two adjacent line sets are connected and rendered in this example.
 
[[File:Lines-poly4-lines12.jpg|thumb|left]]
 
[[File:Lines-poly4-lines12.jpg|thumb|left]]
  
<pre>
+
<syntaxhighlight lang="javascript">
 
pointcoords=POLYPOINTS(4,100,100);
 
pointcoords=POLYPOINTS(4,100,100);
 
s=LINESPLIT(pointcoords,10,true)
 
s=LINESPLIT(pointcoords,10,true)
Line 70: Line 71:
 
RENDER(d)  
 
RENDER(d)  
 
""
 
""
</pre>
+
</syntaxhighlight>
Four line sets rendered in this example.
+
Four adjacent line sets are connected and rendered in this example.
 
[[File:Lines-poly4-lines01234.jpg|thumb|left]]
 
[[File:Lines-poly4-lines01234.jpg|thumb|left]]
<pre>
+
<syntaxhighlight lang="javascript">
 
pointcoords=POLYPOINTS(4,100,100);
 
pointcoords=POLYPOINTS(4,100,100);
 
s=LINESPLIT(pointcoords,10,true)
 
s=LINESPLIT(pointcoords,10,true)
Line 88: Line 89:
 
RENDER(d)
 
RENDER(d)
 
""
 
""
</pre>
+
</syntaxhighlight>
Four line sets and lines across are rendered in this example.
+
 
 +
Just two opposite side point sets connected and rendered in this example.
 +
[[File:Lines-poly4-cage0.jpg|thumb|left]]
 +
<syntaxhighlight lang="javascript">
 +
pointcoords=POLYPOINTS(4,100,100);
 +
s=LINESPLIT(pointcoords,10,true)
 +
 
 +
lines1=(s[0].rowpush(s[2])).m(r=>r.flatten())
 +
lines2=(s[2].rowpush(s[0])).m(r=>r.flatten())
 +
lines3=(s[1].rowpush(s[2])).m(r=>r.flatten())
 +
var d= [
 +
["type","coordinates","count"],
 +
["line",lines2,lines2.length]
 +
]
 +
 
 +
RENDER(d)
 +
""
 +
</syntaxhighlight>
 +
 
 +
Two adjacent and two opposite lines point sets connected and rendered in this example.
 +
[[File:Lines-poly4-lines1+cage0.jpg|thumb|left]]
 +
<syntaxhighlight lang="javascript">
 +
pointcoords=POLYPOINTS(4,100,100);
 +
s=LINESPLIT(pointcoords,10,true)
 +
lines1=(s[0].rowpush(s[2])).m(r=>r.flatten())
 +
lines2=(s[2].rowpush(s[0])).m(r=>r.flatten())
 +
lines3=(s[1].rowpush(s[2])).m(r=>r.flatten())
 +
var d= [
 +
["type","coordinates","count"],
 +
["line",lines1,lines1.length],
 +
["line",lines2,lines2.length],
 +
["line",lines3,lines3.length]
 +
]
 +
RENDER(d)
 +
""
 +
</syntaxhighlight>
 +
 
 +
Four line sets and lines across are connected and rendered in this example.
 
[[File:Lines-poly4-lines01234+cage0213.jpg|thumb|left]]
 
[[File:Lines-poly4-lines01234+cage0213.jpg|thumb|left]]
<pre>
+
<syntaxhighlight lang="javascript">
 
pointcoords=POLYPOINTS(4,100,100);
 
pointcoords=POLYPOINTS(4,100,100);
 
s=LINESPLIT(pointcoords,10,true)
 
s=LINESPLIT(pointcoords,10,true)
Line 112: Line 150:
 
RENDER(d)
 
RENDER(d)
 
""
 
""
</pre>
+
</syntaxhighlight>
  
  
 
== Cardioid Examples ==
 
== Cardioid Examples ==
  
Following the "the midpoints of the circles lie on the perimeter of the fixed generator circle" method to draw a cardioid:
+
Using the method: "midpoints of the circles lie on the perimeter of the fixed generator circle for the cardioid"
  
 
1) Choose a circle c and a point p on its perimeter,
 
1) Choose a circle c and a point p on its perimeter,
Line 123: Line 161:
  
 
==Example 1 ==
 
==Example 1 ==
<pre>
+
[[File:Wki cycloid1.jpg|thumb|left|Cycloid (fig.1)]]
numpoints=50;
+
<syntaxhighlight lang="javascript">
 +
numpoints = 50;
 
pts=MAKEPOLYGONPOINTS(numpoints,[50,50],[200,200], 270)
 
pts=MAKEPOLYGONPOINTS(numpoints,[50,50],[200,200], 270)
 
start=pts[0];
 
start=pts[0];
 
circlesat=
 
circlesat=
 
pts
 
pts
.map(
+
  .map(
p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
+
  p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
)
+
      )
 
+
RENDER( [
RENDER(
+
  ["type","cx","cy","r","stroke","stroke-width","count"],
[
+
  ["circle",circlesat.column(0),circlesat.column(1),circlesat.column(2),"red",1,circlesat.length]
["type","cx","cy","r","stroke","stroke-width","count"],
+
]  
["circle",circlesat.column(0),circlesat.column(1),circlesat.column(2),"red",1,circlesat.length]
+
      )""
]
+
</syntaxhighlight>
)
 
""
 
</pre>
 
[[File:Wki cycloid1.jpg|thumb|left|Cycloid (fig.1)]]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
==Example 2 ==
 
==Example 2 ==
<pre>
+
Rendering two cardioids. A smaller and a larger one.
numpoints=50;
+
[[File:Wki cycloid2.jpg|thumb|left|Two Cycloids (fig.2)]]
 +
<syntaxhighlight lang="javascript">
 +
numpoints = 50;
 
pts=MAKEPOLYGONPOINTS(numpoints,[30,50],[200,200], 150)
 
pts=MAKEPOLYGONPOINTS(numpoints,[30,50],[200,200], 150)
 
start=pts[0];
 
start=pts[0];
 
circlesat1=
 
circlesat1=
 
pts
 
pts
.map(
+
  .map(
p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
+
  p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
)
+
      )
 
 
 
pts=MAKEPOLYGONPOINTS(numpoints,[70,70],[500,200], 0)
 
pts=MAKEPOLYGONPOINTS(numpoints,[70,70],[500,200], 0)
 
start=pts[0];
 
start=pts[0];
 
 
circlesat2=
 
circlesat2=
 
pts
 
pts
.map(
+
  .map(
p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
+
  p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
)
+
      )
 +
cycloids = RENDER([
 +
      ["id","type","cx","cy","r","stroke","stroke-width","count"],
 +
      ["cycloid1","circle",circlesat1.column(1),circlesat1.column(0),circlesat1.column(2),"red",1,circlesat1.length],
 +
      ["cycloid2","circle",circlesat2.column(1),circlesat2.column(0),circlesat2.column(2),"red",1,circlesat2.length]
 +
  ] );""
 +
</syntaxhighlight>
  
cycloids = RENDER(
+
 
[
+
== Bezier Curves ==
["id","type","cx","cy","r","stroke","stroke-width","count"],
+
To display various curves
["cycloid1","circle",circlesat1.column(1),circlesat1.column(0),circlesat1.column(2),"red",1,circlesat1.length],
+
 
["cycloid2","circle",circlesat2.column(1),circlesat2.column(0),circlesat2.column(2),"red",1,circlesat2.length]
+
[[File:Bezier_Curves.png|thumb|left]]
]
+
 
)
+
<syntaxhighlight lang="javascript">
;
+
 
RENDER(
+
RENDER
[
+
(
["id" , "animate","animationsettings"],
+
[
["cycloid1" , "animate",[["loop","rotate","duration","easing"],[true,-360,5*1000,"linear"]]] ,
+
["type","coordinates","fill","stroke","stroke-width"],
["cycloid2" , "animate",[["loop","rotate","duration","easing"],[true,360,5*1000,"linear"]]]
+
["path", "M 70 10 C 70 20, 110 20, 110 10","transparent","black",5],
]                                      
+
["path", "M 10 10 C 20 20, 40 20, 50 10","transparent","black",5],
,
+
["path", "M 130 10 C 120 20, 180 20, 170 10","transparent","black",5],
cycloids
+
["path", "M 10 60 C 20 80, 40 80, 50 60","transparent","black",5],
)
+
["path", "M 70 60 C 70 80, 110 80, 110 60","transparent","black",5],
 +
["path", "M 130 60 C 120 80, 180 80, 170 60","transparent","black",5],
 +
["path", "M 10 110 C 20 140, 40 140, 50 110","transparent","black",5],
 +
["path", "M 70 110 C 70 140, 110 140, 110 110","transparent","black",5],
 +
["path", "M 130 110 C 120 140, 180 140, 170 110","transparent","black",5]
 +
]
 +
);
 
""
 
""
</pre>
+
</syntaxhighlight>
[[File:Wki cycloid2.jpg|thumb|left|Two Cycloids (fig.2)]]
 

Latest revision as of 02:32, 3 December 2020

Graphics Render Examples

Lines, Triangle and Rectangle

Points connecting two intersecting lines at an angle (or two sides of a triangle). Three sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the three line sets. Two lines are connected with the point sets on the lines diagonally opposite points

Lines3-1.jpg
pointcoords=POLYPOINTS(3,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[0])).m(r=>r.flatten())
var d=	[
		["type","coordinates","count"],
		["line",lines1,lines1.length],
	]
RENDER(d) ""

Lines are connected with the point sets on the lines diagonally opposite all three line sets

Lines3-3.jpg
pointcoords=POLYPOINTS(3,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[2])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[0])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[1])).m(r=>r.flatten())
var d=	[	["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length],
		["line",lines3,lines3.length]	]
RENDER(d) ""

Four sets of point coordinates for lines are generated with the function POLYPOINTS() and the lines are split to 10 segments to have ten points for each of the four line sets. Lines are rendered with the set of points and the type of object to render, given to the RENDER function.

Lines-poly4-lines0.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
var d=	[
		["type","coordinates","count"],
		["line",lines1,lines1.length]
	]

RENDER(d) 
""

Two adjacent line sets are connected and rendered in this example.

Lines-poly4-lines12.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
var d=	[	["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length] 	
	]

RENDER(d) 
""

Four adjacent line sets are connected and rendered in this example.

Lines-poly4-lines01234.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
var d=	[	["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length],
		["line",lines3,lines3.length],
		["line",lines4,lines4.length]	]

RENDER(d)
""

Just two opposite side point sets connected and rendered in this example.

Lines-poly4-cage0.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)

lines1=(s[0].rowpush(s[2])).m(r=>r.flatten())
lines2=(s[2].rowpush(s[0])).m(r=>r.flatten())
lines3=(s[1].rowpush(s[2])).m(r=>r.flatten())
var d=	[
		["type","coordinates","count"],
		["line",lines2,lines2.length]
	]

RENDER(d)
""

Two adjacent and two opposite lines point sets connected and rendered in this example.

Lines-poly4-lines1+cage0.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[2])).m(r=>r.flatten())
lines2=(s[2].rowpush(s[0])).m(r=>r.flatten())
lines3=(s[1].rowpush(s[2])).m(r=>r.flatten())
var d=	[
			["type","coordinates","count"],
			["line",lines1,lines1.length],
			["line",lines2,lines2.length],
			["line",lines3,lines3.length]
		]
RENDER(d)
""

Four line sets and lines across are connected and rendered in this example.

Lines-poly4-lines01234+cage0213.jpg
pointcoords=POLYPOINTS(4,100,100);
s=LINESPLIT(pointcoords,10,true)
lines1=(s[0].rowpush(s[1])).m(r=>r.flatten())
lines2=(s[1].rowpush(s[2])).m(r=>r.flatten())
lines3=(s[2].rowpush(s[3])).m(r=>r.flatten())
lines4=(s[3].rowpush(s[0])).m(r=>r.flatten())
lines5=(s[2].rowpush(s[0])).m(r=>r.flatten())
lines6=(s[1].rowpush(s[3])).m(r=>r.flatten())
var d=	[
		["type","coordinates","count"],
		["line",lines1,lines1.length],
		["line",lines2,lines2.length],
		["line",lines3,lines3.length],
		["line",lines4,lines4.length],	
		["line",lines5,lines5.length],
		["line",lines6,lines6.length]
	]

RENDER(d)
""


Cardioid Examples

Using the method: "midpoints of the circles lie on the perimeter of the fixed generator circle for the cardioid"

1) Choose a circle c and a point p on its perimeter, 2) Draw circles containing point p with centers on the perimeter of circle c

Example 1

Cycloid (fig.1)
numpoints = 50;
pts=MAKEPOLYGONPOINTS(numpoints,[50,50],[200,200], 270)
start=pts[0];
circlesat=
	pts
	   .map(
		   p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
	       )
RENDER(	[
	   ["type","cx","cy","r","stroke","stroke-width","count"],
	   ["circle",circlesat.column(0),circlesat.column(1),circlesat.column(2),"red",1,circlesat.length]
	] 
      )""

Example 2

Rendering two cardioids. A smaller and a larger one.

Two Cycloids (fig.2)
numpoints = 50;
pts=MAKEPOLYGONPOINTS(numpoints,[30,50],[200,200], 150)
start=pts[0];
circlesat1=
	pts
	   .map(
		   p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
	       )
pts=MAKEPOLYGONPOINTS(numpoints,[70,70],[500,200], 0)
start=pts[0];
circlesat2=
	pts
	   .map(
		   p=>[p[0],p[1],SQRT(POWER(p[0]-start[0],2)+POWER(p[1]-start[1],2))]
	       )
cycloids = RENDER([
	      ["id","type","cx","cy","r","stroke","stroke-width","count"],
	      ["cycloid1","circle",circlesat1.column(1),circlesat1.column(0),circlesat1.column(2),"red",1,circlesat1.length],
	      ["cycloid2","circle",circlesat2.column(1),circlesat2.column(0),circlesat2.column(2),"red",1,circlesat2.length]
	   ] );""


Bezier Curves

To display various curves

Bezier Curves.png
RENDER
(
[
	["type","coordinates","fill","stroke","stroke-width"],
	["path", "M 70 10 C 70 20, 110 20, 110 10","transparent","black",5],
	["path", "M 10 10 C 20 20, 40 20, 50 10","transparent","black",5],
	["path", "M 130 10 C 120 20, 180 20, 170 10","transparent","black",5],
	["path", "M 10 60 C 20 80, 40 80, 50 60","transparent","black",5],
	["path", "M 70 60 C 70 80, 110 80, 110 60","transparent","black",5],
	["path", "M 130 60 C 120 80, 180 80, 170 60","transparent","black",5],
	["path", "M 10 110 C 20 140, 40 140, 50 110","transparent","black",5],
	["path", "M 70 110 C 70 140, 110 140, 110 110","transparent","black",5],
	["path", "M 130 110 C 120 140, 180 140, 170 110","transparent","black",5]
]
);
""