Difference between revisions of "Manuals/calci/ERF"

From ZCubes Wiki
Jump to navigation Jump to search
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''ERF(ll,ul)'''</div><br/>
+
<div style="font-size:30px">'''ERF(a,b,accuracy)'''</div><br/>
*<math>ll</math> is the lower limit and <math> ul </math> is the upper limit.
+
*<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 
+
*<math>accuracy</math>  gives accurate value of the solution
 +
**ERF(), returns the Error Function.
  
 
==Description==
 
==Description==
 
*This function gives the value of the error function .  
 
*This function gives the value of the error function .  
 
*Error function is the special function which is encountered in integrating the normal distribution.
 
*Error function is the special function which is encountered in integrating the normal distribution.
*In <math>ERF(ll,ul),ll</math> is the lower limit of the integrating function and <math>ul</math> is the upper limit of the integrating function.
+
*In <math>ERF(a,b,accuracy)</math>,<math>a</math> is the lower limit of the integrating function and <math>b</math> is the upper limit of the integrating function.
*Also <math>ul</math> is optional. When we are omitting the <math>ul</math> value, then the  integral of the error function between 0 and the given <math>ll</math> value is returned otherwise it will consider the given <math>ll</math> and <math>ul</math> values.  
+
*Also <math>b</math> is optional. When we are omitting the <math>b</math> value, then the  integral of the error function between 0 and the given <math>a</math> value is returned otherwise it will consider the given <math>a</math> and <math>b</math> values.  
 
*This function is also called Gauss error function.
 
*This function is also called Gauss error function.
 
*<math>ERF </math>is defined by:<math>ERF(z)=\frac {2}{\sqrt{\pi}}\int\limits_{0}^{z}e^{-t^2} dt</math>         
 
*<math>ERF </math>is defined by:<math>ERF(z)=\frac {2}{\sqrt{\pi}}\int\limits_{0}^{z}e^{-t^2} dt</math>         
<math>ERF(a,b)=\frac{2}{\sqrt{\pi}}\int\limits_{a}^{b}e^{-t^2} dt=ERF(b)-ERF(a)</math>.
+
*<math>ERF(a,b)=\frac{2}{\sqrt{\pi}}\int\limits_{a}^{b}e^{-t^2} dt=ERF(b)-ERF(a)</math>.
*In this case 'a' is the lower limit and 'b' is the upper limit.
+
*In this case <math>a</math> is the lower limit and <math>b</math> is the upper limit.
 
*This function will return the result as error when  
 
*This function will return the result as error when  
#any one of the argument is nonnumeric.
+
1.any one of the argument is non-numeric.
#ll or ul is negative.
+
2.<math>a</math> or <math>b</math> is negative.
  
 +
==ZOS==
 +
*The syntax is to calculate error function in ZOS is <math>ERF(a,b,accuracy)</math>.
 +
**<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 +
**<math>accuracy</math>  gives accurate value of the solution.
 +
*For e.g.,ERF(2,3),ERF(2,3,0.001)
  
 
==Examples==
 
==Examples==
#ERF(1,2)=0.15262153
+
#ERF(1,2)=0.15262147206923793
#ERF(3,2)=-0.004655645
+
#ERF(3,2)=0.004655644484048649
#ERF(0,1)=0.842700735
+
#ERF(0,1)=0.8427007929497148
#ERF(5)=1
+
#ERF(5)=0.9999999999984626
#ERF(-3)=NAN
+
#ERF(-3)=-0.9999779095030014
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|PBSFXukqztU|280|center|Error Function}}
  
 
==See Also==
 
==See Also==
Line 28: Line 38:
  
 
==References==
 
==References==
 +
[http://en.wikipedia.org/wiki/Error_function Error Function]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:11, 29 September 2021

ERF(a,b,accuracy)


  • is the lower limit and is the upper limit.
  • gives accurate value of the solution
    • ERF(), returns the Error Function.

Description

  • This function gives the value of the error function .
  • Error function is the special function which is encountered in integrating the normal distribution.
  • In , is the lower limit of the integrating function and is the upper limit of the integrating function.
  • Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
  • This function is also called Gauss error function.
  • is defined by:
  • .
  • In this case is the lower limit and is the upper limit.
  • This function will return the result as error when
1.any one of the argument is non-numeric.
2. or  is negative.

ZOS

  • The syntax is to calculate error function in ZOS is .
    • is the lower limit and is the upper limit.
    • gives accurate value of the solution.
  • For e.g.,ERF(2,3),ERF(2,3,0.001)

Examples

  1. ERF(1,2)=0.15262147206923793
  2. ERF(3,2)=0.004655644484048649
  3. ERF(0,1)=0.8427007929497148
  4. ERF(5)=0.9999999999984626
  5. ERF(-3)=-0.9999779095030014

Related Videos

Error Function

See Also

References

Error Function