Difference between revisions of "Manuals/calci/ERF"

From ZCubes Wiki
Jump to navigation Jump to search
 
(7 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
*<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 
*<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 
*<math>accuracy</math>  gives accurate value of the solution
 
*<math>accuracy</math>  gives accurate value of the solution
 +
**ERF(), returns the Error Function.
  
 
==Description==
 
==Description==
Line 20: Line 21:
 
**<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 
**<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 
**<math>accuracy</math>  gives accurate value of the solution.
 
**<math>accuracy</math>  gives accurate value of the solution.
*For e.g.,erf(2,3),erf(2,3,0.001)
+
*For e.g.,ERF(2,3),ERF(2,3,0.001)
  
 
==Examples==
 
==Examples==
#ERF(1,2)=0.15262153
+
#ERF(1,2)=0.15262147206923793
#ERF(3,2)=-0.004655645
+
#ERF(3,2)=0.004655644484048649
#ERF(0,1)=0.842700735
+
#ERF(0,1)=0.8427007929497148
#ERF(5)=1
+
#ERF(5)=0.9999999999984626
#ERF(-3)=NAN
+
#ERF(-3)=-0.9999779095030014
  
 
==Related Videos==
 
==Related Videos==
  
{{#ev:youtube|IIuXF5QRBTY|280|center|Gaussian Distribution}}
+
{{#ev:youtube|PBSFXukqztU|280|center|Error Function}}
  
 
==See Also==
 
==See Also==
Line 38: Line 39:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Error_function Error Function]
 
[http://en.wikipedia.org/wiki/Error_function Error Function]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:11, 29 September 2021

ERF(a,b,accuracy)


  • is the lower limit and is the upper limit.
  • gives accurate value of the solution
    • ERF(), returns the Error Function.

Description

  • This function gives the value of the error function .
  • Error function is the special function which is encountered in integrating the normal distribution.
  • In , is the lower limit of the integrating function and is the upper limit of the integrating function.
  • Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
  • This function is also called Gauss error function.
  • is defined by:
  • .
  • In this case is the lower limit and is the upper limit.
  • This function will return the result as error when
1.any one of the argument is non-numeric.
2. or  is negative.

ZOS

  • The syntax is to calculate error function in ZOS is .
    • is the lower limit and is the upper limit.
    • gives accurate value of the solution.
  • For e.g.,ERF(2,3),ERF(2,3,0.001)

Examples

  1. ERF(1,2)=0.15262147206923793
  2. ERF(3,2)=0.004655644484048649
  3. ERF(0,1)=0.8427007929497148
  4. ERF(5)=0.9999999999984626
  5. ERF(-3)=-0.9999779095030014

Related Videos

Error Function

See Also

References

Error Function