Difference between revisions of "Manuals/calci/ERFC"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''ERFC(LL'''</font></font></font><font color="#484...")
 
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''ERFC(LL'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''ERFC(a,accuracy)'''</div><br/>
 +
*<math>a</math> is the lower limit.
 +
*<math>accuracy</math> gives the accurate value of the solution.
 +
**ERFC(),returns the Complementary Error Function
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where LL is the lower limit.</font></font></font>
 
  
</div>
+
==Description==
----
+
*This function gives the complementary ERF function.
<div id="7SpaceContent" class="zcontent" align="left"> 
+
*The complementary error function is the error function with the limit x and infinity. It is denoted by erfc(x).
 +
*It is also called scaled complementary error function.
 +
*ERFC is defined by:
 +
<math>ERFC(x)=\frac{2}{\sqrt{\pi}}\int\limits_{x}^{\infty}e^{-t^2} dt=1-ERF(x)</math>.
 +
*This function will return the result as error when a is nonnumeric or negative.
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">he equation is,</font></font></font>
+
==ZOS==
 +
*The syntax is to calculate complementary error function in ZOS is <math>ERFC(a,accuracy)</math>.
 +
**<math>a</math> is the lower limit.
 +
**<math>accuracy</math> gives the accurate value of the solution.
 +
*For e.g.,ERFC(10),ERFC(10,0.01)
  
<font color="#484848"></font>
+
==Examples==
 +
#ERFC(3)=0.000022090496998639075
 +
#ERFC(2)=0.004677734981047288
 +
#ERFC(0)=1
 +
#ERFC(-2)=1.9953222650189528
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2"></font></font></font>
+
==Related Videos==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Here LL = x</font></font></font>
+
{{#ev:youtube|PBSFXukqztU|280|center|Complimentary Error Function}}
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/ERF  | ERF ]]
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
ERFC
+
==References==
 +
[http://en.wikipedia.org/wiki/Error_function Error Function ]
  
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Lets see an example,</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''ERFC(LL''')</font></font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>=ERFC(0.05) is 0.9436</nowiki></font></font></font>
+
*[[ Z3 |   Z3 home ]]
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><font color="#000000"><font face="Arial, sans-serif"><font size="2"><font color="#000000"><font face="Arial, sans-serif"><font size="2">
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function is to find out the complementary ERF function integrated between LL and infinity.</font></font></font>
 
 
 
</font></font></font></font></font></font></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 0.943628
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" |
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="1Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="13SpaceContent" class="zcontent" align="left"><div>[[Image:18.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/18.JPG]]</div></div>
 
----
 

Latest revision as of 03:14, 29 September 2021

ERFC(a,accuracy)


  • is the lower limit.
  • gives the accurate value of the solution.
    • ERFC(),returns the Complementary Error Function


Description

  • This function gives the complementary ERF function.
  • The complementary error function is the error function with the limit x and infinity. It is denoted by erfc(x).
  • It is also called scaled complementary error function.
  • ERFC is defined by:

.

  • This function will return the result as error when a is nonnumeric or negative.

ZOS

  • The syntax is to calculate complementary error function in ZOS is .
    • is the lower limit.
    • gives the accurate value of the solution.
  • For e.g.,ERFC(10),ERFC(10,0.01)

Examples

  1. ERFC(3)=0.000022090496998639075
  2. ERFC(2)=0.004677734981047288
  3. ERFC(0)=1
  4. ERFC(-2)=1.9953222650189528

Related Videos

Complimentary Error Function

See Also

References

Error Function