Difference between revisions of "Z^3 Deeper Features"

From ZCubes Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
 +
 +
*[[ Z3 | << Z3 Home ]]
 +
*[[ Z%5E3_Language_Documentation | Z3 Language Documentation]]
 +
*[[ Z%5E3_Array_Manipulation_Member_Functions | Listing of Z3 Array Manipulation Member Functions]]
  
 
==Function Composition==
 
==Function Composition==
Line 27: Line 31:
 
gives
 
gives
 
0.7749904090605793
 
0.7749904090605793
 
  
 
==Computation with Large Numbers, Decimals of Arbitrary Length, Fractions, Complex Numbers, etc. ==
 
==Computation with Large Numbers, Decimals of Arbitrary Length, Fractions, Complex Numbers, etc. ==
Line 42: Line 45:
 
| BigInt || n|| (60n)!
 
| BigInt || n|| (60n)!
 
|-
 
|-
| Floating Point|| fn.n || 23f5.2
+
| Floating Point|| dn || SQRT(2d300)
 
|-
 
|-
 
| Complex Number || x+yi || 3+4i
 
| Complex Number || x+yi || 3+4i
 
|-
 
|-
| Fractions|| x%%n/d || 23%%5/2
+
| Fractions|| x.n%%d || 1.4%%3 gives 2 1/3
 
|}
 
|}
  
 +
 +
(60n)!
 +
 +
gives
 +
 +
8320987112741390144276341183223364380754172606361245952449277696409600000000000000
 +
 +
SIN(12+34i)
 +
 +
gives
 +
 +
-156534884864787.47+246178250600375.44ⅈ
 +
 +
SQRT(2d300)
 +
 +
gives
 +
 +
1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140799
  
  
 +
Advanced Numeric Types use similar logic to Unit Conversions. Hence a variable can be given an advanced numeric type using <> notation.
  
(60n)!
+
For example, SQRT(23<>d70) will give 4.795831523312719541597438064162693919996707041904129346485309114448257

Latest revision as of 15:47, 5 January 2024

Function Composition

Functions can be composed using the @ operator. A chain of functions can also be composed using the same technique. Composed function works left to right.

a=(x=>x/3)@(x=>x+2);
a(3)

gives 3.

First 3 is divided by 3, and then 2 is added to yield 3 as result.

a=(x=>x+2)@(x=>x/3);
a(3)

gives 1.6666666666666667

a=(SIN@COS@TAN);
a(45)

gives 0.7749904090605793

Computation with Large Numbers, Decimals of Arbitrary Length, Fractions, Complex Numbers, etc.

Often the accuracy provided by the usual computational language is insufficient to handle more complex computations as well as type specific computations.

The following notations are used to indicate advanced numerical types in Z.

Advanced Types
Type Notation Example
BigInt n (60n)!
Floating Point dn SQRT(2d300)
Complex Number x+yi 3+4i
Fractions x.n%%d 1.4%%3 gives 2 1/3


(60n)!

gives

8320987112741390144276341183223364380754172606361245952449277696409600000000000000

SIN(12+34i)

gives

-156534884864787.47+246178250600375.44ⅈ

SQRT(2d300)

gives

1.41421356237309504880168872420969807856967187537694807317667973799073247846210703885038753432764157273501384623091229702492483605585073721264412149709993583141322266592750559275579995050115278206057147010955997160597027453459686201472851741864088919860955232923048430871432145083976260362799525140799


Advanced Numeric Types use similar logic to Unit Conversions. Hence a variable can be given an advanced numeric type using <> notation.

For example, SQRT(23<>d70) will give 4.795831523312719541597438064162693919996707041904129346485309114448257