Difference between revisions of "Manuals/calci/TANH"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''TANH(z)'''</div><br/>
 +
* where z is any real number
 +
==Description==
  
Syntax
+
*This function gives the hyperbolic sin of 'z'.
 +
*Also it is called as Circular function.
 +
* Here <math>SINH=\frac{e^z-e^{-z}}{2}</math> or <math>-iSIN(iz)</math>, where <math>i</math> is the imginary unit and <math>i=\sqrt{-1}</math>
 +
*Also relation between Hyperbolic & Trigonometric function is <math>Sin(iz)=iSin(hz)</math> & <math>Sinh(iz)= iSin(z)</math>
 +
*SINH(-z)=-SINH(z)
  
</div></div>
+
== Examples ==
----
+
'''SINH(z)'''
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
*'''z''' is any real number.
  
Remarks
+
{|id="TABLE1" class="SpreadSheet blue"
  
</div></div>
+
|- class="even"
----
+
|'''SINH(z)'''
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
|'''Value(Radian)'''
  
Examples
+
|- class="odd"
 +
| SINH(0)
 +
| 0
  
</div></div>
+
|- class="even"
----
+
| SINH(10)
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
+
| 11013.23287
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
|- class="odd"
 
+
| SINH(-3)
</div></div>
+
| -10.0178749274099
----
+
|}
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman"> <font size="6">TANH</font> </font>'''</div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><br /><div id="7Space" class="gamizbox" title="7Space"><div id="7SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="7SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="7SpaceRollupContent" align="center"></span></span></div><div id="7SpaceCover"><div id="7SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="3" face="Times New Roman"> </font>
 
 
 
'''TANH''' ('''n''')
 
 
 
'''Where ‘n’'''   is any real number
 
 
 
</div></div>
 
----
 
<div id="13SpaceContent" class="zcontent" align="left"><br /><br /><div id="1Space" class="gamizbox" title="1Space"><div id="1SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="1SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="1SpaceRollupContent" align="center"></span></span></div><div id="1SpaceCover"><div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="3"><font face="Times New Roman"> 
 
 
 
The formula to calculate the hyperbolic tangent is:
 
 
 
</font></font></div></div>
 
----
 
<div id="14SpaceContent" class="zcontent" align="left"><br /><br /><br /><div id="5Space" class="gamizbox" title="5Space"><div id="5SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="5SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="5SpaceRollupContent" align="center"></span></span></div><div id="5SpaceCover"><div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">TANH function returns the hyperbolic tangent of a number.</div></div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><br /><br /><br /><div id="9Space" class="gamizbox" title="9Space"><div id="9SpaceHeader" class="zheaderstyle" title="Double-click to start and stop editing the header."><center></center></div><div id="9SpaceRollup" title="Double-click to rolldown" align="left"><span><span id="9SpaceRollupContent" align="center"></span></span></div><div id="9SpaceCover"><div id="9SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="3"><font face="Times New Roman"> 
 
  
Lets see an example in (Column1 Row 1)
+
==See Also==
  
TANH (R)
+
*[[Manuals/calci/SIN| SIN]]
  
TANH (C1R1)''''''
+
*[[Manuals/calci/COSH| COSH]]
  
That is =TANH (-2) is -0.964
+
*[[Manuals/calci/TANH | TANH]]
  
</font></font></div></div>
+
==References==
----
 
<div id="6SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="  " |
 
<div id="6Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | -2
 
| class="sshl_f" | -0.964
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" |
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="6Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="6Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
----
+
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
</div></div></div></div></div></div></div></div></div></div></div></div>
 

Revision as of 23:30, 4 November 2013

TANH(z)


  • where z is any real number

Description

  • This function gives the hyperbolic sin of 'z'.
  • Also it is called as Circular function.
  • Here or , where is the imginary unit and
  • Also relation between Hyperbolic & Trigonometric function is &
  • SINH(-z)=-SINH(z)

Examples

SINH(z)

  • z is any real number.
SINH(z) Value(Radian)
SINH(0) 0
SINH(10) 11013.23287
SINH(-3) -10.0178749274099

See Also

References