Difference between revisions of "Manuals/calci/SQRT"

From ZCubes Wiki
Jump to navigation Jump to search
 
(16 intermediate revisions by 5 users not shown)
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''SQRT(Value)'''</div><br/>
 +
*<math>Value</math>  is any positive number.
 +
**SQRT(), returns a positive square root.
  
Syntax
+
==Description==
 
+
*This function gives the square root of a positive real number.
It is the number for which you want the square root.
+
*Squaring is the value that can be multiplied by itself to give the original number.
 
+
*The square root of a number is the inverse operation of squaring that number.
SQRT gives a positive square root.
+
*The root of a number is an equal factor of the number.
 
+
*Every non-negative real number a has only one non-negative square root, called the principal square root, which is denoted by <math>\sqrt{a}</math>, where <math>\sqrt{}</math> is called the radical sign or radix.
If number is negative, SQRT gives ‘NaN‘ an error
+
*Square roots of positive whole numbers that are not perfect squares are always irrational numbers.
 
+
*Numbers not expressible as a ratio of two integers .
''' '''Consider n = 625 then
+
    This function will give the result as NaN when n is a negative number.
 
 
=SQRT(625) gives 25
 
 
 
''' '''
 
 
 
</div></div>
 
 
 
<div id="6SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="    " | Column2
 
| class="  " | Column3
 
| class="  " |
 
| Column4
 
|
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 625
 
| class="                                                                                        sshl_f  " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 25
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|
 
|- class="odd"
 
| Row3
 
| class="                            sshl_f  " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|
 
|- class="even"
 
| Row4
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|
 
|- class="odd"
 
| Row6
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" SelectTD  SelectTD" |
 
 
 
 
 
===ZOS===
 
1..100@SQRT
 
  
 +
==Examples==
 +
#=SQRT(0)=0
 +
#=SQRT(1)=1
 +
#=SQRT(136)= 11.661903789690601
 +
#=SQRT(ABS(-625))= 25
 +
#=1..10@SQRT
 
{| class="wikitable"
 
{| class="wikitable"
 +
|+1..10@SQRT
 
|-
 
|-
! Number !! SQRT
+
! Number !! Square Root 
 
|-
 
|-
 
| 1 || 1  
 
| 1 || 1  
 
|-
 
|-
| 2 || 1.4142135623730951  
+
| 2 || 1.4142135623730951
 
|-
 
|-
| 3 || 1.7320508075688772  
+
|3 || 1.7320508075688772
 
|-
 
|-
| 4 || 2  
+
|4 || 2
 
|-
 
|-
 
| 5 || 2.23606797749979  
 
| 5 || 2.23606797749979  
Line 96: Line 43:
 
|-
 
|-
 
| 10 || 3.1622776601683795  
 
| 10 || 3.1622776601683795  
|-
 
| 11 || 3.3166247903554
 
|-
 
| 12 || 3.4641016151377544
 
|-
 
| 13 || 3.605551275463989
 
|-
 
| 14 || 3.7416573867739413
 
|-
 
| 15 || 3.872983346207417
 
|-
 
| 16 || 4
 
|-
 
| 17 || 4.123105625617661
 
|-
 
| 18 || 4.242640687119285
 
|-
 
| 19 || 4.358898943540674
 
|-
 
| 20 || 4.47213595499958
 
|-
 
| 21 || 4.58257569495584
 
|-
 
| 22 || 4.69041575982343
 
|-
 
| 23 || 4.795831523312719
 
|-
 
| 24 || 4.898979485566356
 
|-
 
| 25 || 5
 
|-
 
| 26 || 5.0990195135927845
 
|-
 
| 27 || 5.196152422706632
 
|-
 
| 28 || 5.291502622129181
 
|-
 
| 29 || 5.385164807134504
 
|-
 
| 30 || 5.477225575051661
 
|-
 
| 31 || 5.5677643628300215
 
|-
 
| 32 || 5.656854249492381
 
|-
 
| 33 || 5.744562646538029
 
|-
 
| 34 || 5.830951894845301
 
|-
 
| 35 || 5.916079783099616
 
|-
 
| 36 || 6
 
|-
 
| 37 || 6.082762530298219
 
|-
 
| 38 || 6.164414002968976
 
|-
 
| 39 || 6.244997998398398
 
|-
 
| 40 || 6.324555320336759
 
|-
 
| 41 || 6.4031242374328485
 
|-
 
| 42 || 6.48074069840786
 
|-
 
| 43 || 6.557438524302
 
|-
 
| 44 || 6.6332495807108
 
|-
 
| 45 || 6.708203932499369
 
|-
 
| 46 || 6.782329983125268
 
|-
 
| 47 || 6.855654600401044
 
|-
 
| 48 || 6.928203230275509
 
|-
 
| 49 || 7
 
|-
 
| 50 || 7.0710678118654755
 
|-
 
| 51 || 7.14142842854285
 
|-
 
| 52 || 7.211102550927978
 
|-
 
| 53 || 7.280109889280518
 
|-
 
| 54 || 7.3484692283495345
 
|-
 
| 55 || 7.416198487095663
 
|-
 
| 56 || 7.483314773547883
 
|-
 
| 57 || 7.54983443527075
 
|-
 
| 58 || 7.615773105863909
 
|-
 
| 59 || 7.681145747868608
 
|-
 
| 60 || 7.745966692414834
 
|-
 
| 61 || 7.810249675906654
 
|-
 
| 62 || 7.874007874011811
 
|-
 
| 63 || 7.937253933193772
 
|-
 
| 64 || 8
 
|-
 
| 65 || 8.06225774829855
 
|-
 
| 66 || 8.12403840463596
 
|-
 
| 67 || 8.18535277187245
 
|-
 
| 68 || 8.246211251235321
 
|-
 
| 69 || 8.306623862918075
 
|-
 
| 70 || 8.366600265340756
 
|-
 
| 71 || 8.426149773176359
 
|-
 
| 72 || 8.48528137423857
 
|-
 
| 73 || 8.54400374531753
 
|-
 
| 74 || 8.602325267042627
 
|-
 
| 75 || 8.660254037844387
 
|-
 
| 76 || 8.717797887081348
 
|-
 
| 77 || 8.774964387392123
 
|-
 
| 78 || 8.831760866327848
 
|-
 
| 79 || 8.888194417315589
 
|-
 
| 80 || 8.94427190999916
 
|-
 
| 81 || 9
 
|-
 
| 82 || 9.055385138137417
 
|-
 
| 83 || 9.1104335791443
 
|-
 
| 84 || 9.16515138991168
 
|-
 
| 85 || 9.219544457292887
 
|-
 
| 86 || 9.273618495495704
 
|-
 
| 87 || 9.327379053088816
 
|-
 
| 88 || 9.38083151964686
 
|-
 
| 89 || 9.433981132056603
 
|-
 
| 90 || 9.486832980505138
 
|-
 
| 91 || 9.539392014169456
 
|-
 
| 92 || 9.591663046625438
 
|-
 
| 93 || 9.643650760992955
 
|-
 
| 94 || 9.695359714832659
 
|-
 
| 95 || 9.746794344808963
 
|-
 
| 96 || 9.797958971132712
 
|-
 
| 97 || 9.848857801796104
 
|-
 
| 98 || 9.899494936611665
 
|-
 
| 99 || 9.9498743710662
 
|-
 
| 100 || 10
 
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|ROIfbUQrSY4|280|center|SQRT}}
 +
 +
==See Also==
 +
*[[Manuals/calci/SQRTPI | SQRTPI ]]
 +
*[[Manuals/calci/POWER | POWER ]]
 +
 +
==References==
 +
*[http://en.wikipedia.org/wiki/Square_root Square Root]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 14:20, 22 April 2019

SQRT(Value)


  • is any positive number.
    • SQRT(), returns a positive square root.

Description

  • This function gives the square root of a positive real number.
  • Squaring is the value that can be multiplied by itself to give the original number.
  • The square root of a number is the inverse operation of squaring that number.
  • The root of a number is an equal factor of the number.
  • Every non-negative real number a has only one non-negative square root, called the principal square root, which is denoted by , where is called the radical sign or radix.
  • Square roots of positive whole numbers that are not perfect squares are always irrational numbers.
  • Numbers not expressible as a ratio of two integers .
    This function will give the result as NaN when n is a negative number.

Examples

  1. =SQRT(0)=0
  2. =SQRT(1)=1
  3. =SQRT(136)= 11.661903789690601
  4. =SQRT(ABS(-625))= 25
  5. =1..10@SQRT
1..10@SQRT
Number Square Root
1 1
2 1.4142135623730951
3 1.7320508075688772
4 2
5 2.23606797749979
6 2.449489742783178
7 2.6457513110645907
8 2.8284271247461903
9 3
10 3.1622776601683795

Related Videos

SQRT

See Also

References