Difference between revisions of "Manuals/calci/EXP"

From ZCubes Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by 4 users not shown)
Line 1: Line 1:
 
<div style="font-size:30px">'''EXP(x)'''</div><br/>
 
<div style="font-size:30px">'''EXP(x)'''</div><br/>
 
*where <math>x</math> is the number .
 
*where <math>x</math> is the number .
 +
 +
*EXP() returns e raised to the power of a given number
 +
 
==Description==
 
==Description==
 
*This function gives the <math>e</math> raised to the power of number.  
 
*This function gives the <math>e</math> raised to the power of number.  
*In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math>, or <math>e^x</math>.  
+
*In <math>EXP(x)</math>, where <math>x</math> represents the exponent of <math>e</math> or <math>e^x</math>.  
*The approximate  value of the constant <math>e=2.718281828459045<math> and it is equal to <math>e^x</math> or <math>EXP(1)<math>.
+
*The approximate  value of the constant <math>e=2.718281828459045</math> and it is equal to <math>e^x</math> or <math>EXP(1)</math>.
 
*It is called the Mathematical Constant or Euler's Number or Napier's Constant.  
 
*It is called the Mathematical Constant or Euler's Number or Napier's Constant.  
 
*It is the base of natural logarithm.
 
*It is the base of natural logarithm.
*It can calculate the sum of infinite series: <math>e=1+(1/1)+(1/1.2)+(1/1.2.3)+(1/1.2.3.4) +...</math>
+
*It can be calculate the sum of infinite series: <math>e=1+\frac{1}{1}+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4} +...</math>
 
*And the inverse function of the natural logarithm function is the exponential function:
 
*And the inverse function of the natural logarithm function is the exponential function:
*<math>f^{-1}(x) = e^x</math>.
+
<math>f^{-1}(x) = e^x</math>.
 +
 
 +
==ZOS==
 +
*The syntax is to calculate the EXP in ZOS is <math>EXP(x)</math>.
 +
**where <math>x</math> is the number .
 +
*For e.g.,(-9)..5..2@EXP
 +
{{#ev:youtube|k1aWYvtxxrI|280|center|Exponential}}
  
 
==Examples==
 
==Examples==
  
*EXP(1)=2.718281828459045
+
*=EXP(1)=2.718281828459045
*EXP(0)=1
+
*=EXP(0)=1
*EXP(-5)=0.0067379469990  
+
*=EXP(-5)=0.0067379469990  
*EXP(6.3)=544.5719101259
+
*=EXP(6.3)=544.5719101259
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|v=T3zzvj6wSCQ|280|center|EXP Function}}
  
 
==See Also==
 
==See Also==
 +
 
*[[Manuals/calci/IMEXP  | IMEXP ]]
 
*[[Manuals/calci/IMEXP  | IMEXP ]]
 
*[[Manuals/calci/LOG  | LOG ]]
 
*[[Manuals/calci/LOG  | LOG ]]
Line 24: Line 38:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Absolute_value| Absolute_value]
+
[http://en.wikipedia.org/wiki/Exponential_function  Exponential function]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:21, 19 November 2018

EXP(x)


  • where is the number .
  • EXP() returns e raised to the power of a given number

Description

  • This function gives the raised to the power of number.
  • In , where represents the exponent of or .
  • The approximate value of the constant and it is equal to or .
  • It is called the Mathematical Constant or Euler's Number or Napier's Constant.
  • It is the base of natural logarithm.
  • It can be calculate the sum of infinite series:
  • And the inverse function of the natural logarithm function is the exponential function:

.

ZOS

  • The syntax is to calculate the EXP in ZOS is .
    • where is the number .
  • For e.g.,(-9)..5..2@EXP
Exponential

Examples

  • =EXP(1)=2.718281828459045
  • =EXP(0)=1
  • =EXP(-5)=0.0067379469990
  • =EXP(6.3)=544.5719101259

Related Videos

EXP Function

See Also

References

Exponential function