Difference between revisions of "Manuals/calci/IMAGINARY"

From ZCubes Wiki
Jump to navigation Jump to search
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMAGINARY(z)'''</div><br/>
+
<div style="font-size:30px">'''IMAGINARY(ComplexNumber)'''</div><br/>
*where 'z' is the complex number is in the form a+bi.
+
*<math>ComplexNumber</math>  is of the form <math>x+iy</math>.
 +
**IMAGINARY(), returns the imaginary coefficient of a complex number
 +
 
 
==Description==
 
==Description==
 +
 
*This function gives the imaginary coefficient of a complex number.  
 
*This function gives the imaginary coefficient of a complex number.  
*Imaginary number is a real number which is multiplied with the imaginary unit i,where i=sqrt(-1).  
+
*Complex number is a combination of real and an imaginary number.
*When imaginary number bi is get adding to the real number a, then it is form a complex number.  
+
*Imaginary number is a real number which is multiplied with the imaginary unit <math>i</math>, where <math>i=\sqrt{-1}</math>.  
*Also when we are squaring the imaginary number bi, it will give the negative real number -b^2.  
+
*When imaginary number <math>bi</math> is get adding to the real number <math>a</math>, then it forms a complex number.  
*For eg (5i)^2=-25.We can use COMPLEX function to convert the real and imginary coefficients to a complex number.
+
*Also when we are squaring the imaginary number <math>bi</math>, it will give the negative real number <math>{-b}^2</math>.  
 +
*For eg <math>(5i)^2=-25</math>.  
 +
*We can use [[Manuals/calci/COMPLEX | COMPLEX]] function to convert the real and imaginary coefficients to a complex number.
 
*A complex number is a imaginary number when the real part is zero.
 
*A complex number is a imaginary number when the real part is zero.
 +
 +
==ZOS==
 +
 +
*The syntax is to calculate IMAGINARY in ZOS Section is <math>IMAGINARY(ComplexNumber)</math>.
 +
**<math>ComplexNumber</math>  is of the form <math>x+iy</math>.
 +
*For e.g.,IMAGINARY("6-0.5i")
 +
{{#ev:youtube|Ijhl4ekADac|280|center|Imaginary}}
  
 
==Examples==
 
==Examples==
  
*=EXP(1)=2.718281828459045
+
#=IMAGINARY("2+3i")=3
*=EXP(0)=1
+
#=IMAGINARY("4-5i")=-5
*=EXP(-5)=0.0067379469990
+
#=IMAGINARY("3j")=3
*=EXP(6.3)=544.5719101259
+
#=IMAGINARY("7")=0
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|SP-YJe7Vldo|280|center|Complex Numbers}}
  
 
==See Also==
 
==See Also==
*[[Manuals/calci/IMEXP  | IMEXP ]]
+
 
*[[Manuals/calci/LOG | LOG ]]
+
*[[Manuals/calci/COMPLEX | COMPLEX ]]
*[[Manuals/calci/LN | LN ]]
+
*[[Manuals/calci/IMREAL | IMREAL ]]
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Exponential_function| Exponential function]
+
[http://en.wikipedia.org/wiki/Imaginary_number  Imaginary Number]
 +
 
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 14:44, 19 July 2018

IMAGINARY(ComplexNumber)


  • is of the form .
    • IMAGINARY(), returns the imaginary coefficient of a complex number

Description

  • This function gives the imaginary coefficient of a complex number.
  • Complex number is a combination of real and an imaginary number.
  • Imaginary number is a real number which is multiplied with the imaginary unit , where .
  • When imaginary number is get adding to the real number , then it forms a complex number.
  • Also when we are squaring the imaginary number , it will give the negative real number .
  • For eg .
  • We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.
  • A complex number is a imaginary number when the real part is zero.

ZOS

  • The syntax is to calculate IMAGINARY in ZOS Section is .
    • is of the form .
  • For e.g.,IMAGINARY("6-0.5i")
Imaginary

Examples

  1. =IMAGINARY("2+3i")=3
  2. =IMAGINARY("4-5i")=-5
  3. =IMAGINARY("3j")=3
  4. =IMAGINARY("7")=0

Related Videos

Complex Numbers

See Also

References

Imaginary Number