Difference between revisions of "Manuals/calci/IMAGINARY"

From ZCubes Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''IMAGINARY(z)'''</div><br/>
+
<div style="font-size:30px">'''IMAGINARY(ComplexNumber)'''</div><br/>
*<math>z</math> is the complex number is in the form <math>a+bi</math>.
+
*<math>ComplexNumber</math> is of the form <math>x+iy</math>.
 +
**IMAGINARY(), returns the imaginary coefficient of a complex number
 +
 
 
==Description==
 
==Description==
 +
 
*This function gives the imaginary coefficient of a complex number.  
 
*This function gives the imaginary coefficient of a complex number.  
 +
*Complex number is a combination of real and an imaginary number.
 
*Imaginary number is a real number which is multiplied with the imaginary unit <math>i</math>, where <math>i=\sqrt{-1}</math>.  
 
*Imaginary number is a real number which is multiplied with the imaginary unit <math>i</math>, where <math>i=\sqrt{-1}</math>.  
 
*When imaginary number <math>bi</math> is get adding to the real number <math>a</math>, then it forms a complex number.  
 
*When imaginary number <math>bi</math> is get adding to the real number <math>a</math>, then it forms a complex number.  
 
*Also when we are squaring the imaginary number <math>bi</math>, it will give the negative real number <math>{-b}^2</math>.  
 
*Also when we are squaring the imaginary number <math>bi</math>, it will give the negative real number <math>{-b}^2</math>.  
*For eg <math>(5i)^2=-25</math>. We can use [[Manuals/calci/COMPLEX | COMPLEX]]function to convert the real and imaginary coefficients to a complex number.
+
*For eg <math>(5i)^2=-25</math>.  
 +
*We can use [[Manuals/calci/COMPLEX | COMPLEX]] function to convert the real and imaginary coefficients to a complex number.
 
*A complex number is a imaginary number when the real part is zero.
 
*A complex number is a imaginary number when the real part is zero.
 +
 +
==ZOS==
 +
 +
*The syntax is to calculate IMAGINARY in ZOS Section is <math>IMAGINARY(ComplexNumber)</math>.
 +
**<math>ComplexNumber</math>  is of the form <math>x+iy</math>.
 +
*For e.g.,IMAGINARY("6-0.5i")
 +
{{#ev:youtube|Ijhl4ekADac|280|center|Imaginary}}
  
 
==Examples==
 
==Examples==
IMAGINARY("2+3i")=3  
+
 
IMAGINARY("4-5i")=-5
+
#=IMAGINARY("2+3i")=3  
IMAGINARY("3j")=3
+
#=IMAGINARY("4-5i")=-5
IMAGINARY("7")=0
+
#=IMAGINARY("3j")=3
 +
#=IMAGINARY("7")=0
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|SP-YJe7Vldo|280|center|Complex Numbers}}
  
 
==See Also==
 
==See Also==
 +
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
 
*[[Manuals/calci/IMREAL  | IMREAL ]]
 
*[[Manuals/calci/IMREAL  | IMREAL ]]
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Imaginary_number| Imaginary Number]
+
[http://en.wikipedia.org/wiki/Imaginary_number   Imaginary Number]
 +
 
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 14:44, 19 July 2018

IMAGINARY(ComplexNumber)


  • is of the form .
    • IMAGINARY(), returns the imaginary coefficient of a complex number

Description

  • This function gives the imaginary coefficient of a complex number.
  • Complex number is a combination of real and an imaginary number.
  • Imaginary number is a real number which is multiplied with the imaginary unit , where .
  • When imaginary number is get adding to the real number , then it forms a complex number.
  • Also when we are squaring the imaginary number , it will give the negative real number .
  • For eg .
  • We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.
  • A complex number is a imaginary number when the real part is zero.

ZOS

  • The syntax is to calculate IMAGINARY in ZOS Section is .
    • is of the form .
  • For e.g.,IMAGINARY("6-0.5i")
Imaginary

Examples

  1. =IMAGINARY("2+3i")=3
  2. =IMAGINARY("4-5i")=-5
  3. =IMAGINARY("3j")=3
  4. =IMAGINARY("7")=0

Related Videos

Complex Numbers

See Also

References

Imaginary Number