Difference between revisions of "Manuals/calci/GAMMADIST"
Jump to navigation
Jump to search
(22 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''GAMMADIST(x,alpha,beta, | + | <div style="font-size:30px">'''GAMMADIST(x,alpha,beta,cumulative,accuracy)'''</div><br/> |
− | *<math>x</math> is the value of the distribution | + | *<math>x</math> is the value of the distribution. |
− | *<math> | + | *<math>alpha</math> and <math>beta</math> are the value of the parameters. |
− | *<math> | + | *<math>cumulative</math> is the logical value like true or false. |
+ | *<math>accuracy</math> gives accurate value of the solution. | ||
+ | **GAMMADIST(), returns the gamma distribution. | ||
==Description== | ==Description== | ||
*This function gives the value of the Gamma Distribution. | *This function gives the value of the Gamma Distribution. | ||
− | *The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir. *This distribution is the Continuous Probability Distribution with two parameters <math>\alpha | + | *The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir. |
− | *In GAMMADIST(x,alpha,beta, | + | *This distribution is the Continuous Probability Distribution with two parameters <math>\alpha</math> and <math>\beta</math>. |
− | *If <math> | + | *In <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>, <math>x</math> is the value of the distribution, <math>\alpha</math> is called shape parameter and <math>\beta</math> is the rate parameter of the distribution and <math>cumulative</math> is the logical value like TRUE or FALSE. |
+ | *If <math>cumulative</math> is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function. | ||
+ | *<math>cumulative</math> gives accurate value of the solution. | ||
*The gamma function is defined by : | *The gamma function is defined by : | ||
<math>Gamma(t) = \int\limits_{0}^{\infty}x^{t-1} e^{-x} dx</math>. | <math>Gamma(t) = \int\limits_{0}^{\infty}x^{t-1} e^{-x} dx</math>. | ||
*It is for all complex numbers except the negative integers and zero. | *It is for all complex numbers except the negative integers and zero. | ||
*The Probability Density Function of Gamma function using Shape, rate parameters is: | *The Probability Density Function of Gamma function using Shape, rate parameters is: | ||
− | <math> f(x; \alpha,\beta)=\frac{x^{\alpha-1} e^{-\frac {x}{\beta}}}{\beta^{\alpha} Gamma(\alpha)}</math>, for | + | <math> f(x; \alpha,\beta)=\frac{x^{\alpha-1} e^{-\frac {x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}</math>, for |
− | :<math>x, \alpha , \beta > 0 </math>, where <math>e</math> is the natural number(e = 2.71828...), <math>\alpha</math> is the number of occurrences of an event, and <math>Gamma(\alpha)</math> is the Gamma function. | + | :<math>x, \alpha , \beta > 0 </math>, where <math>e</math> is the natural number(e = 2.71828...), <math>\alpha</math> is the number of occurrences of an event, and <math>\Gamma(\alpha)</math> is the Gamma function. |
− | *The | + | *The Standard Gamma Probability Density function is: |
− | <math>f(x, \alpha)=\frac{x^{\alpha-1} e^{-x}}{Gamma(\alpha)}</math>. | + | <math>f(x,\alpha)=\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}</math>. |
− | *The Cumulative Distribution Function of Gamma is | + | *The Cumulative Distribution Function of Gamma is : |
+ | <math>F(x;\alpha,\beta)=\frac{\gamma(\alpha,\frac{x}{\beta})}{\Gamma(\alpha)}</math>, or | ||
+ | :<math>F(x;\alpha,\beta)= e^{-\frac {x}{\beta}} \sum_{i=k}^{\infty} \frac{1}{i!} (\frac{x}{\beta})^i</math> for any positive integer <math>k</math>. | ||
*When alpha is a positive integer, then the distribution is called Erlang distribution. | *When alpha is a positive integer, then the distribution is called Erlang distribution. | ||
− | *If the shape parameter | + | *If the shape parameter <math>\alpha</math> is held fixed, the resulting one-parameter family of distributions is a natural exponential family. |
− | *For a positive integer n, when alpha = n/ | + | *For a positive integer <math>n</math>, when <math>\alpha =\frac{n}{2}</math>, <math>\beta = 2</math>, and <math>cu= TRUE</math>, GAMMADIST returns (1 - CHIDIST(x)) with <math>n</math> degrees of freedom. |
− | *This function shows the result as error when 1.Any one of the argument is non numeric | + | *This function shows the result as error when |
− | 2. x<0, alpha< | + | 1.Any one of the argument is non numeric |
+ | 2.<math>x<0</math>, <math>\alpha \le 0</math> or <math>\beta \le 0</math>. | ||
+ | |||
+ | ==ZOS== | ||
+ | *The syntax is to calculate GAMMADIST in ZOS is <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>. | ||
+ | **<math>x</math> is the value of the distribution, | ||
+ | **<math>alpha</math> and <math>beta</math> are the value of the parameters | ||
+ | **<math>cumulative</math> is the logical value like true or false. | ||
+ | **<math>accuracy</math> gives accurate value of the solution. | ||
+ | *For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9) | ||
+ | GAMMADIST(10.45,2.8,6.4,FALSE,0.9) | ||
+ | {{#ev:youtube|l_qRjj8bUdw|280|center|Gamma Distribution}} | ||
==Examples== | ==Examples== | ||
+ | #GAMMADIST(8.15372,5,7,TRUE)=0.006867292 | ||
+ | #GAMMADIST(20.78542,2,6,TRUE)=0.860283293 | ||
+ | #GAMMADIST(20.78542,2,6,FALSE)=0.01806997 | ||
+ | #GAMMADIST(45.6523,9,4,FALSE)=0.019724471 | ||
+ | #GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259 | ||
+ | #GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564 | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}} | ||
==See Also== | ==See Also== | ||
Line 32: | Line 59: | ||
==References== | ==References== | ||
− | [http://en.wikipedia.org/wiki/ | + | [http://en.wikipedia.org/wiki/Gamma_distribution Gamma Distribution] |
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:08, 7 August 2018
GAMMADIST(x,alpha,beta,cumulative,accuracy)
- is the value of the distribution.
- and are the value of the parameters.
- is the logical value like true or false.
- gives accurate value of the solution.
- GAMMADIST(), returns the gamma distribution.
Description
- This function gives the value of the Gamma Distribution.
- The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
- This distribution is the Continuous Probability Distribution with two parameters and .
- In , is the value of the distribution, is called shape parameter and is the rate parameter of the distribution and is the logical value like TRUE or FALSE.
- If is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
- gives accurate value of the solution.
- The gamma function is defined by :
.
- It is for all complex numbers except the negative integers and zero.
- The Probability Density Function of Gamma function using Shape, rate parameters is:
, for
- , where is the natural number(e = 2.71828...), is the number of occurrences of an event, and is the Gamma function.
- The Standard Gamma Probability Density function is:
.
- The Cumulative Distribution Function of Gamma is :
, or
- for any positive integer .
- When alpha is a positive integer, then the distribution is called Erlang distribution.
- If the shape parameter is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
- For a positive integer , when , , and , GAMMADIST returns (1 - CHIDIST(x)) with degrees of freedom.
- This function shows the result as error when
1.Any one of the argument is non numeric 2., or .
ZOS
- The syntax is to calculate GAMMADIST in ZOS is .
- is the value of the distribution,
- and are the value of the parameters
- is the logical value like true or false.
- gives accurate value of the solution.
- For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)
GAMMADIST(10.45,2.8,6.4,FALSE,0.9)
Examples
- GAMMADIST(8.15372,5,7,TRUE)=0.006867292
- GAMMADIST(20.78542,2,6,TRUE)=0.860283293
- GAMMADIST(20.78542,2,6,FALSE)=0.01806997
- GAMMADIST(45.6523,9,4,FALSE)=0.019724471
- GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
- GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564
Related Videos
See Also
References