Difference between revisions of "Manuals/calci/BETAINV"

From ZCubes Wiki
Jump to navigation Jump to search
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/>
+
<div style="font-size:25px">'''BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)'''</div><br/>
*Where prob is the probability value associated with the beta distribution.  
+
*<math>Probability</math> is the probability value associated with the beta distribution.  
*Alpha& beta are the values of  the shape parameter.
+
*<math>Alpha</math> & <math>Beta</math> are the values of  the shape parameter.
*a&b the lower and upper limit to the interval of x.
+
*<math>LowerBound</math> & <math>UpperBound</math> the lower and upper limit to the interval of <math>x</math>.
 +
*<math>Accuracy</math> gives accurate value of the solution.
 +
*<math>DivisionsAndDepthArray</math> is the value of the division.
 +
**BETAINV(), returns the inverse of the Cumulative Distribution Function for a specified beta distribution.
 +
 
  
 
==Description==
 
==Description==
*This function gives the inverse value of cumulative beta probability distribution.
+
*This function gives the inverse value of Cumulative Beta Probability Distribution.
*It is called inverted beta function or beta prime.
+
*It is called Inverted Beta Function or Beta Prime.
*In BETAINV(prob,alpha,beta,a,b), prob is the probability value of the associated with beta distribution, alpha and beta are the values of the  two positive shape parameters and a and b are the lower and upper limit. *Normally the limit values are optional, i.e., when we are giving the values of a&b then the result value is from a and b, otherwise when we are omitting the values a and b by default it will consider a=0 and b=1, so the result value is from 0 and1.
+
*In <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>, <math>Probability</math> is the probability value associated with Beta Distribution, <math>Alpha</math> and <math>Beta</math> are the values of two positive shape parameters and <math>LowerBound</math> and <math>UpperBound</math> are the lower and upper limit.
*If BETADIST(x,alpha,beta,a,b)=prob, then BETAINV(prob,alpha,beta,a,b)=x.  
+
*Normally the limit values are optional, i.e. when we are giving the values of <math>LowerBound</math>&<math>UpperBound</math> then the result value is from <math>a</math> and <math>b</math>.
*BETAINV using the iterating method to find the value of x.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
+
*When we are omitting the values <math>LowerBound</math> and <math>UpperBound</math>, by default it will consider <math>LowerBound=0</math> and <math>UpperBound=1</math>, so the result value is from <math>0</math> and <math>1</math>.
 +
*If <math>BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)=Probability</math>, then <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)=x</math>.  
 +
*<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*This function will give the error result when   
 
*This function will give the error result when   
#Any one of the arguments are nonnumeric
+
1.Any one of the arguments are non-numeric
#alpha or beta<=0
+
2.Alpha or Beta <math>\le</math> 0  
#x<a ,x>b, or a=b
+
3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound
#we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1.  
+
4.we are not mentioning the limit values for LowerBound & UpperBound ,  
 +
  by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1
 +
 
 +
==ZOS==
 +
 
 +
*The syntax is to calculate of this function in ZOS is <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>.
 +
**<math>probability</math> is the probability value associated with the beta distribution.
 +
**<math>Alpha</math> and <math>Beta</math> are the values of  the shape parameter.
 +
**For e.g.,BETAINV(0.30987,10,18,12,16)
 +
 
 
==Examples==
 
==Examples==
#BETAINV(0.2060381025,5,9,2,6)=3
+
#BETAINV(0.2060381025,5,9,2,6) = 3
#BETAINV(0.359492343,8,10)=0.399999976(EXCEL) is approximate to 0.4=1.75(calci)
+
#BETAINV(0.359492343,8,10) = 1.75
                                             
+
#BETAINV(0.685470581,5,8,2,6) = 3.75
#BETAINV(0.685470581,5,8,2,6)= 3.78378773(excel)=3.75(calci)
+
#BETAINV(0.75267,1,7,7,9) = 7.25
                                                 
+
#BETAINV(0.5689,-2,4,3,5) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0)
#BETAINV(0.75267,1,7,7,9)=7.361844063(Excel)=7.25(calci)
+
 
                                             
+
==Related Videos==
#BETAINV(0.5689,-2,4,3,5)=NAN, because alpha<0.
+
 
 +
{{#ev:youtube|v=KjlIoium8n4|280|center|Beta Inverse Distribution}}
  
 
==See Also==
 
==See Also==
Line 30: Line 46:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution]
+
[http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:50, 24 August 2020

BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)


  • is the probability value associated with the beta distribution.
  • & are the values of the shape parameter.
  • & the lower and upper limit to the interval of .
  • gives accurate value of the solution.
  • is the value of the division.
    • BETAINV(), returns the inverse of the Cumulative Distribution Function for a specified beta distribution.


Description

  • This function gives the inverse value of Cumulative Beta Probability Distribution.
  • It is called Inverted Beta Function or Beta Prime.
  • In , is the probability value associated with Beta Distribution, and are the values of two positive shape parameters and and are the lower and upper limit.
  • Normally the limit values are optional, i.e. when we are giving the values of & then the result value is from and .
  • When we are omitting the values and , by default it will consider and , so the result value is from and .
  • If , then .
  • use the iterating method to find the value of .suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
1.Any one of the arguments are non-numeric
2.Alpha or Beta  0 
3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound
4.we are not mentioning the limit values  for LowerBound & UpperBound , 
  by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1

ZOS

  • The syntax is to calculate of this function in ZOS is .
    • is the probability value associated with the beta distribution.
    • and are the values of the shape parameter.
    • For e.g.,BETAINV(0.30987,10,18,12,16)

Examples

  1. BETAINV(0.2060381025,5,9,2,6) = 3
  2. BETAINV(0.359492343,8,10) = 1.75
  3. BETAINV(0.685470581,5,8,2,6) = 3.75
  4. BETAINV(0.75267,1,7,7,9) = 7.25
  5. BETAINV(0.5689,-2,4,3,5) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0)

Related Videos

Beta Inverse Distribution

See Also

References

Beta Distribution