Difference between revisions of "Manuals/calci/BETAINV"

From ZCubes Wiki
Jump to navigation Jump to search
 
(11 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/>
+
<div style="font-size:25px">'''BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)'''</div><br/>
*<math>prob</math> is the probability value associated with the beta distribution.  
+
*<math>Probability</math> is the probability value associated with the beta distribution.  
*<math>\alpha</math> & <math>beta</math> are the values of  the shape parameter.
+
*<math>Alpha</math> & <math>Beta</math> are the values of  the shape parameter.
*<math>a</math> & <math>b</math> the lower and upper limit to the interval of <math>x</math>.
+
*<math>LowerBound</math> & <math>UpperBound</math> the lower and upper limit to the interval of <math>x</math>.
 +
*<math>Accuracy</math> gives accurate value of the solution.
 +
*<math>DivisionsAndDepthArray</math> is the value of the division.
 +
**BETAINV(), returns the inverse of the Cumulative Distribution Function for a specified beta distribution.
 +
 
  
 
==Description==
 
==Description==
 
*This function gives the inverse value of Cumulative Beta Probability Distribution.
 
*This function gives the inverse value of Cumulative Beta Probability Distribution.
 
*It is called Inverted Beta Function or Beta Prime.
 
*It is called Inverted Beta Function or Beta Prime.
*In <math>BETAINV(prob,\alpha,\beta,a,b)</math>, <math>prob</math> is the probability value associated with Beta Distribution, <math>alpha</math> and <math>beta</math> are the values of two positive shape parameters and <math>a</math> and <math>b</math> are the lower and upper limit.
+
*In <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>, <math>Probability</math> is the probability value associated with Beta Distribution, <math>Alpha</math> and <math>Beta</math> are the values of two positive shape parameters and <math>LowerBound</math> and <math>UpperBound</math> are the lower and upper limit.
*Normally the limit values are optional, i.e. when we are giving the values of <math>a</math>&<math>b</math> then the result value is from <math>a</math> and <math>b</math>.
+
*Normally the limit values are optional, i.e. when we are giving the values of <math>LowerBound</math>&<math>UpperBound</math> then the result value is from <math>a</math> and <math>b</math>.
*When we are omitting the values <math>a</math> and <math>b</math>, by default it will consider <math>a=0</math> and <math>b=1</math>, so the result value is from <math>0</math> and <math>1</math>.
+
*When we are omitting the values <math>LowerBound</math> and <math>UpperBound</math>, by default it will consider <math>LowerBound=0</math> and <math>UpperBound=1</math>, so the result value is from <math>0</math> and <math>1</math>.
*If <math>BETADIST(x,\alpha,\beta,a,b)=prob</math>, then <math>BETAINV(prob,\alpha,\beta,a,b)=x</math>.  
+
*If <math>BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)=Probability</math>, then <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)=x</math>.  
 
*<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*This function will give the error result when   
 
*This function will give the error result when   
 
  1.Any one of the arguments are non-numeric
 
  1.Any one of the arguments are non-numeric
  2.<math>\alpha</math> or <math>\beta \le 0 </math>
+
  2.Alpha or Beta <math>\le</math> 0
  3.<math>x<a ,x>b</math> or <math>a=b</math>
+
  3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound
  4.we are not mentioning the limit values  for <math>a</math>&<math>b</math>,
+
  4.we are not mentioning the limit values  for LowerBound & UpperBound ,
  by default it will consider the Standard Cumulative Beta Distribution, <math>a = 0</math> and <math>b = 1</math>.
+
  by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1
 +
 
 +
==ZOS==
 +
 
 +
*The syntax is to calculate of this function in ZOS is <math>BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)</math>.
 +
**<math>probability</math> is the probability value associated with the beta distribution.
 +
**<math>Alpha</math> and <math>Beta</math> are the values of  the shape parameter.
 +
**For e.g.,BETAINV(0.30987,10,18,12,16)
  
 
==Examples==
 
==Examples==
Line 24: Line 35:
 
#BETAINV(0.685470581,5,8,2,6) = 3.75
 
#BETAINV(0.685470581,5,8,2,6) = 3.75
 
#BETAINV(0.75267,1,7,7,9) = 7.25
 
#BETAINV(0.75267,1,7,7,9) = 7.25
#BETAINV(0.5689,-2,4,3,5) = NAN, because <math>\alpha < 0</math>.
+
#BETAINV(0.5689,-2,4,3,5) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0)
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|v=KjlIoium8n4|280|center|Beta Inverse Distribution}}
  
 
==See Also==
 
==See Also==
Line 31: Line 46:
  
 
==References==
 
==References==
[http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution]
+
[http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution]
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:50, 24 August 2020

BETAINV (Probability,Alpha,Beta,LowerBound,UpperBound,Accuracy,DivisionsAndDepthArray)


  • is the probability value associated with the beta distribution.
  • & are the values of the shape parameter.
  • & the lower and upper limit to the interval of .
  • gives accurate value of the solution.
  • is the value of the division.
    • BETAINV(), returns the inverse of the Cumulative Distribution Function for a specified beta distribution.


Description

  • This function gives the inverse value of Cumulative Beta Probability Distribution.
  • It is called Inverted Beta Function or Beta Prime.
  • In , is the probability value associated with Beta Distribution, and are the values of two positive shape parameters and and are the lower and upper limit.
  • Normally the limit values are optional, i.e. when we are giving the values of & then the result value is from and .
  • When we are omitting the values and , by default it will consider and , so the result value is from and .
  • If , then .
  • use the iterating method to find the value of .suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
1.Any one of the arguments are non-numeric
2.Alpha or Beta  0 
3.Number<LowerBound ,Number>UpperBound or LowerBound = UpperBound
4.we are not mentioning the limit values  for LowerBound & UpperBound , 
  by default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1

ZOS

  • The syntax is to calculate of this function in ZOS is .
    • is the probability value associated with the beta distribution.
    • and are the values of the shape parameter.
    • For e.g.,BETAINV(0.30987,10,18,12,16)

Examples

  1. BETAINV(0.2060381025,5,9,2,6) = 3
  2. BETAINV(0.359492343,8,10) = 1.75
  3. BETAINV(0.685470581,5,8,2,6) = 3.75
  4. BETAINV(0.75267,1,7,7,9) = 7.25
  5. BETAINV(0.5689,-2,4,3,5) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0)

Related Videos

Beta Inverse Distribution

See Also

References

Beta Distribution