Difference between revisions of "Manuals/calci/FISHERINV"

From ZCubes Wiki
Jump to navigation Jump to search
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''FISHERINV(y)'''</div><br/>
+
<div style="font-size:30px">'''FISHERINV(Number)'''</div><br/>
*<math>y</math> is the number.
+
*<math>Number</math> is the value to find inverse of fisher transformation.
 +
**FISHERINV(), returns the inverse of the Fisher transformation.
 +
 
 
==Description==
 
==Description==
 
*This function gives the inverse of the Fisher transformation.
 
*This function gives the inverse of the Fisher transformation.
 
*We use this to test the correlations between set of data.
 
*We use this to test the correlations between set of data.
*The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}} i.e.,y=FISHER(x</math>), then FISHERINV(y)=x.
+
*The Inverse of the Fisher transformation is: <math>x= \frac {e^{2y-1}}{e^{2y+1}}</math> i.e <math>y=FISHER(x)</math>, then <math>FISHERINV(y)=x</math>
 
*It can be used to construct a confidence interval.  
 
*It can be used to construct a confidence interval.  
A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  
+
*A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.  
*This function will give the result as error when the y value is nonnumric.
+
This function will give the result as error when the <math>Number</math> value is non-numeric.
 +
 
 +
==ZOS==
 +
*The syntax is to calculate FISHERINV in ZOS is <math>FISHERINV(Number)</math>.
 +
**<math>Number</math> is the value to find inverse of fisher transformation.
 +
*For e.g.,FISHERINV(0.4521..0.507..0.01)
 +
{{#ev:youtube|eGv4DvXyLhc|280|center|Inverse Fisher transformation}}
  
 
==Examples==
 
==Examples==
  
#FISHERINV(0.6389731838)=0.56419999998
+
#FISHERINV(0.6389731838) = 0.56419999998
#FISHERINV(0)=0
+
#FISHERINV(0) = 0
#FISHERINV(0.1234)=0.1227774315035342
+
#FISHERINV(0.1234) = 0.1227774315035342
#FISHERINV(1)=0.761594155955765
+
#FISHERINV(1) = 0.761594155955765
#FISHERINV(-0.4296)=-0.4049869686465480
+
#FISHERINV(-0.4296) = -0.4049869686465480
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|I0SjHVOHztc|280|center|Sampling Distributions}}
  
 
==See Also==
 
==See Also==
Line 21: Line 33:
 
*[[Manuals/calci/FISHER  | FISHER ]]
 
*[[Manuals/calci/FISHER  | FISHER ]]
  
 +
==References==
 +
[http://en.wikipedia.org/wiki/F-distribution  Fisher Distribution]
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
  
==References==
+
*[[ Z3 |   Z3 home ]]
[http://en.wikipedia.org/wiki/Bessel_function| Bessel Function]
 

Latest revision as of 16:01, 7 August 2018

FISHERINV(Number)


  • is the value to find inverse of fisher transformation.
    • FISHERINV(), returns the inverse of the Fisher transformation.

Description

  • This function gives the inverse of the Fisher transformation.
  • We use this to test the correlations between set of data.
  • The Inverse of the Fisher transformation is: i.e , then
  • It can be used to construct a confidence interval.
  • A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the  value is non-numeric.

ZOS

  • The syntax is to calculate FISHERINV in ZOS is .
    • is the value to find inverse of fisher transformation.
  • For e.g.,FISHERINV(0.4521..0.507..0.01)
Inverse Fisher transformation

Examples

  1. FISHERINV(0.6389731838) = 0.56419999998
  2. FISHERINV(0) = 0
  3. FISHERINV(0.1234) = 0.1227774315035342
  4. FISHERINV(1) = 0.761594155955765
  5. FISHERINV(-0.4296) = -0.4049869686465480

Related Videos

Sampling Distributions

See Also

References

Fisher Distribution