Difference between revisions of "Manuals/calci/MINVERSE"

From ZCubes Wiki
Jump to navigation Jump to search
 
(12 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''MINVERSE(arr)'''</div><br/>
+
<div style="font-size:30px">'''MINVERSE(a)'''</div><br/>
*<math>arr</math> is the  array of numeric elements
+
*<math>a</math> is the  array of numeric elements.
 +
**MINVERSE(), returns the matrix inverse of an array.
  
 
==Description==
 
==Description==
Line 25: Line 26:
 
*Where <math>adj(A)</math> is the adjoint of <math>A</math>.
 
*Where <math>adj(A)</math> is the adjoint of <math>A</math>.
 
*Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix.
 
*Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix.
*Also <math>A.A^-1=A^-1.A=I</math>, where <math>I</math> is the identity matrix.
+
*Also <math>A.A^{-1}=A^{-1}.A = I</math>, where <math>I</math> is the identity matrix.
 
*Non-square matrices do not have inverses.
 
*Non-square matrices do not have inverses.
 
*Not all square matrices have inverses.
 
*Not all square matrices have inverses.
Line 32: Line 33:
 
  1. Any one of the cell is non-numeric or any cell is empty or contain text
 
  1. Any one of the cell is non-numeric or any cell is empty or contain text
 
  2. Suppose number of rows not equal to number of columns
 
  2. Suppose number of rows not equal to number of columns
 +
 +
==ZOS==
 +
*The syntax is to calculate the inverse of the matrix in ZOS is <math>MINVERSE(a)</math>.
 +
**<math>a</math> is the  array of numeric elements.
 +
*For e.g.,minverse([[10,12],[11,14]])
  
 
== Examples ==
 
== Examples ==
Matrix A
+
<math>Matrix A=
A=(4     3
+
\begin{bmatrix}
  3     2)
+
4 & 3 \\
MINVERSE(B5:C6)=(-2       3
+
3 & 2 \\
                  3       -4)
+
\end{bmatrix}
MATRIX A
+
</math>
A=(3       4
+
<math>
      6       8)
+
MINVERSE(B5:C6)=
MINVERSE(C4:D5)=Null, because its det value is 0.
+
\begin{bmatrix}
MATRIX A
+
-2 & 3 \\
A=(2     3
+
3 & -4 \\
  4     7)
+
\end{bmatrix}
MINVERSE(B4:C5)=(3.5     -1.5
+
</math>
                -2           1)
+
 
 +
<math>Matrix A=
 +
\begin{bmatrix}
 +
3 & 4 \\
 +
6 & 8 \\
 +
\end{bmatrix}
 +
</math>
 +
<math>MINVERSE(C4:D5)=Null</math>, because its determinant value is 0.
 +
 
 +
<math>Matrix A=
 +
\begin{bmatrix}
 +
2 & 3 \\
 +
4 & 7 \\
 +
\end{bmatrix}
 +
</math>
 +
<math>MINVERSE(B4:C5)=  
 +
\begin{bmatrix}
 +
3.5 & -1.5 \\
 +
-2 & 1 \\
 +
\end{bmatrix}
 +
</math>
 +
 
 +
 
 +
==Related Videos==
  
 +
{{#ev:youtube|01c12NaUQDw|280|center|Inverse of Matrix}}
  
 
==See Also==
 
==See Also==
  
*[[Manuals/calci/COS | COS]]
+
*[[Manuals/calci/MMULT | MMULT ]]
*[[Manuals/calci/TAN | TAN]]
+
*[[Manuals/calci/MDETERM | MDETERM ]]
*[[Manuals/calci/ASIN| ASIN]]
 
*[[Manuals/calci/DSIN | DSIN]]
 
  
 
==References==
 
==References==
  
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
+
*[http://en.wikipedia.org/wiki/Invertible_matrix Matrix Inverse]
*[http://en.wikipedia.org/wiki/Sine SIN]
+
 
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:02, 24 July 2018

MINVERSE(a)


  • is the array of numeric elements.
    • MINVERSE(), returns the matrix inverse of an array.

Description

  • This function gives the inverse matrix for the given matrix.
  • We have to find a inverse of a matrix then it should satisfy the following conditions
  • 1.A matrix must be a square matrix.
  • 2.It's determinant not equal to 0.
  • Let be the 2x2 matrix with the elements

.

  • Then the inverse of matrix is denoted by .
  • Now let be the matrix is of order .
  • Then the inverse of is
  • Where is the adjoint of .
  • Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix.
  • Also , where is the identity matrix.
  • Non-square matrices do not have inverses.
  • Not all square matrices have inverses.
  • A square matrix which has an inverse is called invertible or non-singular, and a square matrix without an inverse is called non-invertible or singular.
  • This function will return the result as error when
1. Any one of the cell is non-numeric or any cell is empty or contain text
2. Suppose number of rows not equal to number of columns

ZOS

  • The syntax is to calculate the inverse of the matrix in ZOS is .
    • is the array of numeric elements.
  • For e.g.,minverse([[10,12],[11,14]])

Examples

, because its determinant value is 0.


Related Videos

Inverse of Matrix

See Also

References